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Scalar meson fields are studied for the conformally flat metric e+>J; (dx 1 ' +dx" +dx 3' -dx 4 '). Complete 
sets of solutions of the field equations have been obtained for massless mesons. and the field equations have 
been reduced to a single ordinary differential equation in IjJ for massive mesons. In either case IjJ is found to 
be a function of 

X 1'+X"+X 3 ' _x 4 ' or CIXl+C,X'+C3X3+C4X4 

(CI' C,. C,. c. being constants). and </> the meson field is found to be constant or a function of 1jJ. 

I. INTRODUCTION 

Massive and massless scalar meson fields in general 
relativity have been studied by several authors. In 
particular Penney1 has given an exact solution for mass­
less scalar meson fields with a conformally flat metric. 
The present note is an attempt to obtain a complete set 
of exact solutions for both massive and massless scalar 
mesons in a conformally flat metric. 

II. FIELD EQUATIONS 

The field equations for a scalar meson field are 

R",v - tg",vR = - [cp,,,, CP,v - tg",v(CP,<> cp,a - m2cp2)], 

where we have set K = 1, and where cP is the meson 
field and m the meson mass. (1) can be rewritten as 

(1) 

R",v=-cP,,,,CP,v+tg,,vm2cp2. (2) 

The metric is 
2 2 2 2 

ds2 = exp( - I/J )(dx1 + dx2 + dx3 - dx4 ), 

i. e., 

g .. ~ oxp(+ .) (
' 

1 1 _,)" exp(+ .).,. (,.y). 

(3) 

We shall first prove that for solutions of (2) of t~e 
form (3), I/J must be a function of (x12 + X22 + x32 - x4 ) or 
(c1x1 + C2X2 + C3x3 + C4X4), (c1, c2, c3, C4 being constants) 
and cP is either a constant or a function of I/J. For (3), 
R",v is given by 

where 

A. Case I. cP is constant 

In this case we see from Eqs. (2) that the space is 
an Einstein space (i. e., a space for which R",v 

(4) 

= constant Xg",), and we know2 that only a conformally 
flat Einstein space is a space of constant curvature 
and the metric takes the form 

{ 2 2 2 2 
g",v = 1 + (Ko/4)(x1 + x 2 + x 3 _ x4 )}-1 

2 2 2 2 
X (dx1 + dx2 + dx3 - dx4 )0 
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R",v becomes 

R"v = - 3Kog",v, 

where Ko is the constant curvature. Thus (2) and hence 
(1) is satisfied if 

Ko< 0 and cp2=_ 6Ko/m2 
2 2 2 2 

Thus I/J is function of x1 + x 2 + x3 - X4 and cP is constant. 

B. Case II. ¢ is not constant 

Comparing (2) and (4) and noting (3) 

- 2 exp(I/J/2)(exp(- 1/J/2)),,,,,v = - CP,,, CP,v for IJ."* II. 

In particular 

{{exp(- 1/J/2)),4},1 = (CP,4 exp(- 1/J/2)/2) CP,I, i = 1,2,3. (5) 

From (5) we note that the derivatives of {exp(- 1/J/2)),4 
with respect to x1, x2, and x 3 are proportional to the 
derivatives cP with respect to xl, x 2, and x 3• Thus, if 
X4 is treated as a constant, {exp(- 1/J/2)),4 and cP are 
functionally dependent3 and since cP is not constant for 
the case under consideration we can say that 
{exp(- 1/J/2)),4 is a function of cP if X4 is treated as a 
constant; in other words 

(exp(- 1/J/2),4 = 1)(x4, cp), where 1) is some function. 

Similarly, 

(exp(- 1/J/2»,1 = CI(Xt, cp), 

{exp(- 1/J/2),2 = (j(cp, x2), 

(exp(-I/J/2),3=Y(CP,x3), (6) 

where CI, (j, yare some functions. From (5) and (6) 

Clq. =t exp(- 1/J/2) CP,1' (jq. = t exp(- 1/J/2) CP,2, 

Yq. = t exp(- 1/J/2) CP,3, 1)q. = t exp(- 1/J/2) CP,4, 

where CI q. = a CI / a cP 1,,1 as constant and so on, and CI 1 
1 x 

= aCi/ax Iq. as constant, etc. From (2)-(4) 

(7) 

- 2 exp(I/J/2){exp(- 1/J/2),I,1 + h =- CP;I + {exp(+ 1/J)/2)m2cp2 

- 2 exp(I/J/2)(exp(- 1/J/2),4,4 - h = - CP;4 - (exp(+ 1/J)/2) m2cp2. 

(8) 

Using (6), (7), and (8) 

CI x1 = {j,,2 = Y,,3 = - 1),,4 

= - (exp(- 1/J/2)/4)(m2cp2 exp(- I/J) - X). (9) 
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However, Clxl is a function of ¢ and xl, (3,J. is a func­
tion of ¢ and x2, and so on. Thus (9) is possible only 
if exp(- 1JI/2)(m2 cp2 exp(- <p) - X) is a function of ¢ alone, 4 

or 

(10) 

where v = - t exp(- </!/2)(m2¢2 exp(- </!) - X); v, p, q, r, S 

are functions of ¢ only. From (6), (7), (10) and using 
relations as ¢,1,2 = ¢,2,1, 

2(x1vU + ¢u) + (xlv + p) _ 2 (x2vu +qu) + (x2v+q) 
x1v~ +p~ - x2v</J +q~ 

_ 2(x3vl/J0 + ru) + (x3v + r) _ 2(- x 4vu + su) + (- x4v + s) 
- 3 - 4 

x v</J +r</J -x vI/J +s</J 

v~ -=dv/d¢ and so on, (11) 

where in view of (7) and (10) and the fact that ¢ is not 
constant, all the denominators of (11) cannot be zero. 
If any of the denominators of (11) is zero, (11) is to be 
interpreted to mean that the corresponding numerator 
is zero. 

In (11), we have four different expressions that are 
equal to each other, but one of them is a function of ¢ 
and xl, another, a function of ¢ and x 2 , and so on. 
This is possible only if each of them is equal to a func­
tion of ¢ only, say !;(¢),5 

2vu +v = 2p~~ +p = 2qu +q = ru +r = ~ =~(¢), 
v~ PI/J qI/J rI/J sI/J 

(12) 

where as before, if any of the denominators vanishes, 
the corresponding numerator vanishes. 

Thus v, p, q, r are solutions of an ordinary linear 
homogeneous second order differential equation and 
hence at most two of them can be independenL Thus, 
let 

v=A17+B~, p=Al17+ Bll:, q=A217+B21:, 

r=A317+B31:, S=A417+ B41:, 

where 17 and!: are solutions of the same differential 
equation and A, B, A 1, B1, A 2, B2, A 3, A 4, B4 are 
constants. By (10) and (13), (6) and (7) reduce to 

(exp(- </!/2»,1J. = 17P ,1J. + I:Q, .. , 

i exp(- </!/2) ¢, .. =Tj~P,1J. + !:Q, .. , 

where 

(13) 

(14) 

P = (A/2)(x12 + x 22 + X32 _ X42 ) + (A1x
1 + A2X2 + A3X3 + A 4x

4), 

Q = (B/2)(x12 + X22 + X32 _ X4
2
) + (B1x

1 + Bzx
2 + B3X3 + B4X2 ), 

which readily gives 

i exp(- </!/2)(E + <p), .. = (I:</JTj/Tj~ - 1:) Q, .. 

where E = J (Tj d¢/Tj¢L 

From (15) we have either of the following: 

I: </JTj/17I/J - I: = 0, 
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(15) 

(16a) 

or 

E + </! = f( Q), where f is some function. (16b) 

If (16a) is true, I: =KTj, K is a constant, and we get, 
from (14), 

(exp(- </!/2», .. =17(P+KQ),IJ.' 

i exp(- </!/2) ¢, .. =rjI/J (P + KQ), .. , 

i. e., </! and ¢ are functions of P + KQ. If, on the other 
hand, (16b) is true, we get from (15) and (16b), 

(
I:I/Jrj) f'(Q) 

2 exp(- E/2) 7J; -I: = exp{f(Q)/2)· (17) 

The left-hand side of (17) is a function of ¢ and the 
right-hand side of (17) is a function of Q. Thus ¢ is a 
function of Q. This implies that E is a function of ¢, 
and we get from (16b) that </! is a function of Q. Thus in 
case II, for either (16a) or (16b) we have 

</!=</!(u), ¢=¢(u), (18) 

where 
2 2 2 2 

u=C(x1 +x2 +x3 _X4 )+ (C 1X
1+C2x

2 +C3X
3+C4X4), (19) 

C, C l' C 2, C 3, C 4 being constants. 

We note that case I of ¢ is a constant and is also a 
special case of (18) and (19). Also, for C"* 0, it is ob­
vious that, without loss of generality, one can set 

For C =0 

u =Ctx
1 + C2X

2 + C3X
3 + C4x4. 

III. CONCLUSION 

Thus the solutions of (2) for the conformally flat 
metric (3) are of the form (18), where u is given by 
(20) or (21). The field equations then reduce to 

Case A-u is given by (20): 

Case B-u is given by (21), ci + C~ + C~ - cl "* 0: 

(20) 

(21) 

We note also that in either case A or case B, one can 
get from (a) and (b) an ordinary differential equation 
for </! and equation (a) is integrable for ¢. Complete in­
tegration is easily possible for m = O. 

Case C-u is given by (21), ci + C~ + C~ - c1 = 0: 

</!uu- H;= - ¢:, (a) 

m = 0, (b) 

i. e., this case is only possible for massless mesons. 
(a) is readily integrable for ¢. </! is an arbitrary func­
tion of u except for <Puu - t </!~ < O. 
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3rt is a well-known result of the theory of functions that if two 
continuously differentiable functions have their partial de­
rivatives proportional to each other then the two functions 
are functionally dependent. 

4This can be seen as follows. Since <p is not a constant, at 
least one of <P,l' <P,2, <P,3' <P,4 is not zero. Let <P,l "" 0; we 
have 

Consider derivatives with respect to x 1 and x 3, 

[/3x21,q,<P,1 = [Yx 31,q,<P,l> 

[/3x2I,q,<P,3=[Y 31 q,<P 3+[Y 31 x 3, x, t x, 
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which readily gives [Yx3I,x3=0, i.e., Yx 3 is a function of <P. 
Hence so are O!xlo/3x 2' 6x4 ' 

5This argument may seem to break down if several of the de­
nominators of equations (11) vanish. However, it is easy to 
see that if one or more of the denominators of (11) vanish, 
then we must have v =0, as can be seen as follows. Let 

x 1vq,+pq,=0. 

By (7) and (10), 

<P,l = O. (ii) 

Also from (11) and (i) 

2 (xlvq,q, +Pq,q,) + (xlv+p) = O. (iii) 

Noting (ii) and the fact that v and p are functions of <p, we 
see that (i) and (iii) can hold only if v =0. For v = 0, all the 
expressions of (11) are functions of <P only; hence (12) is 
automatically true. 

Dipankar Ray 1901 



                                                                                                                                    

Invariants and wavefunctions for some time-dependent 
harmonic oscillator-type Hamiltonians 

P. G. L. Leach 

Department of Mathematics, La Trobe University, Bundoora, 3083, Australia 
(Received I November 1976) 

Recently the author has shown that the Hamiltonian, H = (1I2)",T A(t)f.l+ B(t)T",+ C(t), in which 
A( t) is a positive definite symmetric matrix and w~ = qi' P. = I, n, i = I, n, w~ = Pi' P. = n + 1,2 n, 
i = I, n, may be transformed to the time-independent Hamiltonian, Ii = (1!2)Ci?iiI by a time-dependent 
linear canonical transformation, (ij = S(a}+r. Ii is an exact invariant of the motion described by H. A 
matrix invariant may also be constructed which provides a basis for the generators of the dynamical 
symmetry group SU(n) which may always be associated with H, usually as a noninvariance group. In this 
paper we examine, by way of example, an oscillator with source undergoing translation, the two­
dimensional anisotropic oscillator, general one- and two-dimensional oscillators with Hamiltonians of 
homogeneous quadratic form and obtain explicit invariants and Schriidinger wavefunctions with the aid of 
the linear canonical transformations. 

1. INTRODUCTION 

The use of time-dependent linear canonical trans­
formations for the construction of invariants for oscil­
lator-type Hamiltonians has been developed recently 
by Leach. He showedt that the Hamiltonian 

(1.1) 

in which (as hereinafter) P and q are canonically con­
jugate variables, could be transformed by means of 
the time-dependent linear canonical transformation 

[~] = [~j_C_o~_i!'1::_~t:~~~2_1_-_~j~!~~C£t_~i~_i!'t] 
P Ct sin Wt - C2 sin W2 : Ct cos Wt - C2 cos W2 

in which pet) is solution of 

p + w2(t) P =p-3 

and 

ci - c~ =1, 

w.1 = r t (p-2_1)dt', w. = r t (p-2+1)dt' 
Jto 2 Jto ' 

to the time-independent Hamiltonian 

Ii = tp2 + tQ2• 

(1. 2) 

(1. 3) 

(1. 4) 

(1. 5) 

Ii provides an invariant for the motion described by 
H. In terms of the original coordinates it is 

I=Hp-2q2(Ci +C~ + 2C1C2 cos2W) + (Pp _ pq)2 

x (Ci + C~ - 2C t C2 cos2 W) - 4p-tq (pp - pq) Ct C2 sin2 W], 

(1. 6) 

where 

W = r t p-2 dt'. 
Jto 

(1. 7) 

In quantum mechanics any products pq are symmetrized 
to ~(pq +qp). The invariant (1. 6) is a generalization 
of the Lewis invariant2,3 (whose work was partly anti­
cipated by Semour4 with others5 ) for the same 
Hamiltonian. The invariant which Lewis obtained us­
ing a different method is 
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(1. 8) 

Subsequently Leach6 showed that the Hamiltonian 

H=twT A(t)w+B(t)Tw+C(t) (1. 9) 

in which A(t) is a positive definite symmetric matrix 
of order 2n and the canonical variables (ql, PI) are 
written as 

ql=wl', i=l,n, p-=l,n, 

PI=WI', i=l,n, p-=n+1,2n, 

may always be transformed to 

H=t~Tw 

(1. 10) 

(1. 11) 

by means of a linear canonical transformation. The 
transformation is 

w = Set) w + ret) (1. 12) 

in which set) is a member of the group of real symplec­
tic matrices and ret) is a real vector such that 

S=ES-SEA, r=Er-SEB. (1.13) 

The matrix E is the symplectic matrix 

[
On, In] 

E=[EI'"]= . - In, On 
(1. 14) 

The time-dependence in (1. 9) is arbitrary provided that 
A(t), B(t), and C(t) are continuous functions of time over 
the interval of interest and A(t) does not vary in rank 
(which implies that it remains positive definite). 

The Hamiltonian (1. 9) has an invariant 

I = t(Sw + r)T(Sw + r). (1. 15) 

Various interpretations of the nature of the invariant 
have been offered. Eliezer and Gray' suggested that 
(1. 8) was the angular momentum associated with a two­
dimensional auxiliary motion for which (1. 3) was the 
radial equation of motion. Gunther and Leach, 8 in their 
discussion of the three-dimensional motion with 
Hamiltonian 

3 

H=~ 6 [p2+W2(t)q2] 
2 1=1' , 

(1. 16) 
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also provided an angular momentum interpretation for 
the corresponding invariant 

(1. 17) 

but, as an alternative, proposed that the invariant was 
Hamiltonian in nature. In view of Leach's more recent 
work on canonical transformations relating H (1. 9) and 
H (1. 11) [from which I (1. 15) is obtained], the invariant 
appears to be the Hamiltonian of the archtypal oscillator 
represented by H. 

The invariant I (1. 15) has an associated symmetric 
invariant matrix 

[I~V] = i w W T + i(E W)(E wJT 
= 1(Sw + r)(Sw + rJT + iE(SW + r)(SW + r)T ET. (1. 18) 

The Poisson bracket of each element III-v with I is zero. 
In the transformed coordinates, (Ai T = (QT, pT), the 
matrix [I~v] has elements of the form i(QjQj +PjPJ) 

and i(QiPj - PjQj)' The former correspond to the ele­
ments of Fradkin's tensor9,10 and the latter are essen­
tially elements of the angular momentum tensor. In all 
there are n2 - 1 elements of [I~v] linearly independent 
of I. They provide a sufficient basis for the generators 
of the symmetry group SU(n) which is accordingly the 
symmetry group of I. Since the Poisson bracket of H 
(1. 9) and 1(1. 15) is nonzero in most cases, SU(n) is a 
noninvariance dynamical symmetry group of that 
Hamiltonian. Hamiltonians of the form of (1. 9) are 
said to be characterized by the symmetry group SU(n). 

Lewis and Riesenfeldl1 showed how the existence of an 
invariant made possible (in principle) the solution of 
the Schrodinger equation for that motion. Since all os­
cillator systems with Hamiltonians of the type (1. 9) 
are characterized by the same symmetry group, we 
expect that their wavefunctions should be similar. 
Wolf12 has shown that linear canonical transformations 
may be used to solve Schrodinger equations by intro­
ducing integral transforms which reduce to geometric 
transforms in special cases. It is not clear as to the 
nature, if any, of the time-dependence in his work. 

In this paper we shall examine some simple time­
dependent oscillator systems. For them we obtain the 
appropriate invariants and solutions of the Schrodinger 
equation. Thereby we illustrate a wider use for linear 
canonical transformations than was previously 
indicated. 13,14 

2. OSCI LLATOR SOURCE UNDERGOING 
TRANSLATION 15 

The source of a time-independent one-dimensional 
oscillator potential is moving with respect to an inertial 
frame such that at time t the source is displaced set). 
A particle of mass m is moving under the influence of 
this potential and, relative to the inertial frame, is 
located at q. The Hamiltonian of the motion is 

1 
H = - p2 + .!mw2(q _ s)2 (2.1) 2m 2 , 

where p is the momentum conjugate to q. 

As w is time-independent, a suitable form for the 
transformed Hamiltonian is 
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H= ~ p2 +imw2Qz. 
2m 

(2.2) 

Clearly the transformation from (q,p) to (Q,P) will be 
translational only and we write 

[: H: }[::]. (2.3i 

where, adapting (1.13) (cf. Leach6) to the different form 

of Ht::} [ _r;;r, -~w'sJ (2.4) 

_{Y1 + wZr1 =- ~2S 
r2 = mr1 (2.5) 

which have the solutions 

r1 =A sinwt + B coswt + w Ie: s sinw(t - t') dt' 

r2 = mW[A coswt - B sinwt + w ;;t S cosw(t - t') dt']. to 
(2.6) 

The invariant of the motion is given by H and is 

1 ( )2 I 2 ( )2 1= 2m p+r2 +zmw q+r1 . (2.7) 

For a specified problem it is convenient to use the 
particular integrals contained in (2.6) for r1 and r 2• 

Note that (2.6) remains valid if s is of period 21T/W. 

If the translation is due to the Galilean transformation 

s=Ut, 

the particular integrals of (2.6) are 

r1=-Ut, r2=-mU, 

giving the invariant 

(2.8) 

(2.9) 

(2.10) 

The invariant is simply the Hamiltonian of the motion 
obtained by taking the source as origin and reflects 
the invariance of form of Newton's equations of motion 
if the frame of reference is moving with constant veloci­
ty relative to an inertial frame (cf. Eliezer and 
Leach16). 

If the source is accelerating uniformly so that 

s = iat2
, 

ri =- taf +a/w2, rz = - mat, 

the invariant is 

(2.11) 

(2.12) 

(2.13) 

This is a reflection of the well-known principle of 
equivalence between constant acceleration and a uni­
form gravitational field in that, relative to the accele­
rating frame, the equation of motion contains a term 
of the form which would arise in an inertial frame from 
a uniform gravitational field opposite in direction to 
the acceleration. 

P. G.L. Leach 1903 



                                                                                                                                    

3. WAVEFUNCTION WHEN THE SOURCE 
UNDERGOES TRANSLATION 

The Schrodinger equation for the Hamiltonian H (2.2) 
is 

-2 2- -
It 2 ~ 1 2 2-:- . (l:}) 

--2 ~Q +2I11w QtiJ=zli-:;-t' 
111 C n. 

with solution 

/[in ( Q, t') = [2 nn! (7Tli/m )1/ 2]-1 12 exp[ - i(n +~) wt'] 

x exp[ - mQ2 /2li] HJ(m /m I/2Q]. 

The Hamiltonian H (2.1) has Schrodinger equation 

li 2 a2il; 2'" 
- -2 ~ +'!,l1lw2(q-s)2<Ji=ili ":>~t 0 

}fI uq ~ (j 

Equation (3.3) may be transformed to Eq. (3.1) by 
writing 

Q=q+Yj, l'=t, 

iP(Q, t') = exp (if f(Q, tl») Jj(Q, t'), 

wheref(Q, t') is found by simple calculation to be 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

f(Q, t') = - Qr2 + h;' H/2nl - il1lW2h + 8)2] dtl! (3.6) 
o 

with rl and Y2 being the same as in (2.3). The solution 
of (3.3) is therefore 

<Pn(q, t) = exp (iff(q +Yl' tl) iJin(q + rl, f). 

Under a Galilean transformation we use (2.8) and 
(2.9) to obtain 

(3.7) 

~Jn(q,t)=exp(~(IIlUq-imU2t)) Jjn(q-Ut,t) (3.8) 

in which the phase introduced by to is made zero by 
making Q coincide with q when t = O. For a uniformly 
accelerating source, (2.11) and (2.12) give 

<Jin(q, t) = exp (~ (malq -} llla2
f3 + ~w2;nat) ) 

Xiiin(q-iaP+a/w2,t). (3.9) 

As Wolf12 has noted, a translation does not produce an 
integral transform relationship between zb and Jj, but a 
geometric transform which connects if! and iii by a phase 
factor as in (3.7). The relation which he gives [Ref. 
12, Eq. (2.9c)] seems to be different, probably because 
he is considering a function of q only and not of q and t. 

4. HAMILTONIAN OF HOMOGENEOUS 
QUADRATIC FORM IN TWO VARIABLES 

As indicated in Sec. 1, Leach6 has shown that a time­
dependent Hamiltonian of nonhomogeneous quadratic 
form may be transformed to a time-independent homo­
geneous quadratic form by means of a time-dependent 
linear canonical transformation. WOU12 has shown that 
the wavefunctions of the corresponding Schrodinger 
equations are related by an integral transform except 
when the transformation matrix S has the form 

s~ [: a~']. (4.1) 
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In this case, the integral transform collapses to a 
geometric transform, L e., the wavefunctions are re­
lated by a phase factor as in Sec. 3 together with a 
possible scaling term. 

As the example given in (1. 2) shows, S is not usually 
as simple as in (4.1). However, the Hamiltonian 

H = ~p-2{p2 + Q2) (4.2) 

has a readily solvable Schrodinger equation. Clearly 
the wavefunction is 

Jjn(Q, t) = l2nn! (7Tli)1/2J-lf2 eXPL- i(n +~) r p-2dt'] 

Xexp[- Q2/2lilHn[Q/li I/2 ]. (4.3) 

We shall see that it is always possible to transform 
the Hamiltonian 

(4.4) 

in which a, b, and c may be functions of time to that of 
(4. 2) using an S of type (4.1). Thus the wavefunction 
corresponding to H (4. 4) will be readily accessible from 
that of H (4. 2). 

Following Leach, 1 the elements of the coefficient 
matrix S of the transformation 

[QJ =[",1 Y2J [qJ (4.5) 
P Y3 Y4 J) 

satisfy the set of first-order differential equations 

h + bYI - C
2Y2 = Y3P-2 

Yz + a2Yl - bY2 = Y4P-2 

Ys + bY3 - ('2Y4 = - Y1P-2 

Y4 + a2Y3 - bY4 = - Y2P-2. 

Setting :1-'2 at zero, a solution of (4.6) gives 

[ 
{ap)-1 'OJ 

S- . 
- [apb - (ap)]/a2, ap 

(4.6) 

(4.7) 

which is of the type (4. 1). The function pet) is a solu­
tion of 

If we put a2 = 1, b = 0, and c2 = w2{t) in (4. 8), we obtain 
Eq. (1. 3) which relates to the Hamiltonian (1, 1). The 
invariant for the Hamiltonian (4.4) [corresponding to 
the Lewis invariant (1. 8) for (1. 1)] is 

U sing the relationship given by Wolfe [Ref. 22, 
(2.8b)], the Schrodinger wavefunction for H (4.4) is 

[ 
i {(ap) } q2] if!n(q, t) = (ap)-lf2 exp 2li ap - b (il 

(4.9) 

x ~n(q/ap, f). (4.10) 

When (f, b, and c take the particular values given above, 
the wavefunction (4.10) is that which has been obtained 
using different approaches by Camiz et al. 17 and 
Khandekar and Lawande. 18 
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5. ANISOTROPIC OSCILLATOR IN TWO 
DIMENSIONS 

The Hamiltonian of the time-dependent anisotropic 
oscillator (taken as two-dimensional here, but the 
method may be used for the n-dimensional problem) is 

(5.1) 

Under a linear canonical transformation (5.1) may be 
transformed to 

(5.2) 

The transformation is accomplished in two stages by 

pi 
pf 

Pil 0 
I 

0 0 I 
I 

Pi
l I 

0 I 0 0 
I 
I ---------1------

-PI 0 I Pj Po I 
I 

0 - P2 
I 

0 P2 I 
I 

ql 

q2 
(5.3) 

PI 

P2 

Cl1COSW11+CI2COSWI2, 0 : -Cl1sinWl1-CI2sinWI2, 0 
I 

q{ 

q:f 0, C11 cos W21 + C22 cos W22 : 0, - C21 sin W21 - C22 sin W22 
I 

------------------------~-------------------------- (5.4) 
Cl1sinW11-C12sinWI2, 0 : C11cosW11-CI2cosWI2, 0 

I 

0, C2IsinW21-C22sinW22 : 0, C2IcosW21-C22cosW22 

which are found using the general method given by 
Leach. 6 In (5.3), PI (t) and P2(t) are solutions of 

PI + wi(t) PI =Pi3
, P2+W~(t)P2=P23, (5.5) 

respectively and in (5.4) 

Wl1 = .t (Pi2 - 1) dt', W12 = j/( Pi2 + 1) dt', 
to to (5.6) 

W21 = I.e (Pi2 - 1) dt', W22 = I/ (pi2 + 1) dt', to 0 

(5.7) 

As the Hamiltonian H (5.2) possesses the dynamical 
symmetry group SU(2) and the Poisson bracket of Hand 
H is nonzero, the group SU(2) is a noninvariance sym­
metry group of H and the two-dimensional anisotropic 
oscillator is said to be characterized by this group. 

In Sec. 4, we saw that the Schrodinger wavefunctions 
</J and;;; were simply related (4.10) when 5 was of the 
type (4, 1lo The corresponding matrix in four dimen­
sions is 

[ 51 OJ 
5 = 53 54 (5.8) 

in which the sub matrices satisfy the conditionsl4 

(5.9) 

Since the transformation matrix from (ql,q2,Pl,P2) to 
(QI, Q2, Pj, P 2) is not of the form (5.8) we would not ex­
pect the method of Sec. 4 to be applicable. However, 
the coefficient matrix in (5.3) is of that form. The in­
termediate Hamiltonian produced by (5.3) is 

(5.10) 

The Schrodinger equation for (5.10) is clearly separable 
and the wavefunction is given by 

</J~n(q1' qf, t) = </J~(qi, f) </J~(qf, f), (5,11) 

where both </J~ and </J~ are of the form of ;;;n in (4.3). The 
problem is reduced to the product of two one-dimen­
sional problems and W oli' s relation may be applied to 
each part yielding 
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I [.. .)] ( )-1/2 Z ( E.1 2 P2 2 
i]Jmn(ql, q2, t) = PIP2 exp 21f PI ql + P2 q2 

Xti"(~ t)dJ,(qZ t). 
m PI' n P2' 

(5.12) 

An invariant for H (5.1) may be obtained in the form 
given by (1. 15) with the associated invariant matrix 
being given by (1. 18). The matrix S used is the product 
of the coefficient in (5.4) by that in (5.3). The invariant 
is 

2 

I=~ ~ [Pi2qi(C;j+c12+2CilCi2cos2Wi) 
.=1 

+ (PiPi - Piqi)2(cll + C;2 - 2C iCi cos2 Wi) 

- 4Pil qi(PiPi - Piqi) CilCi2 sin2 Wi] 

in which 

WI=J;~Pi2dtl, W2=J;~P22dtl. 

(5.13) 

(5.14) 

A simpler version of the invariant may be obtained 
from H' (5.10). Writing 

H' =Pi2 II + Pi2I2, 
2 

I=II+I2=~ L; [p:V+(p·p·_,ojq.)2]. 
i=1 " ,t t 

(5.15) 

(5.16) 

Formally (5.16) is (5.13) with C11 = 1 = C2j , C12 = 0 = C22 . 
However, (5.16) does not lend itself to the construction 
of a matrix invariant since this involves Wi! and Wi2 • 
To solve the Schrodinger equation we need only trans­
form H to H', but to obtain the symmetry group we 
must go to H. 

6. HAMILTONIAN OF HOMOGENEOUS QUADRATIC 
FORM IN FOUR VARIABLES 

The Hamiltonian is 

H=t(qT,pT)AG) (6.1) 

in which A is a positive definite symmetric 4 x 4 matrix 
with time-dependent elements and q and p are two vec­
tors. It will be amenable to a similar method of solu­
tion for the wavefunction as the anisotropic oscillator 
in Sec. 5 provided there exists a matrix S of the form 
(5.8) such that the canonical transformation 
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(6.2) 

produces the Hamiltonian 

H=MQT, pT]D [~J ' (6.3) 

where D is the diagonal matrix 

(6.4) 

The matrix S satisfies the differential equation [Ref. 6, 
Eq. (3.5)] 

S =tDS - SEA. (6.5) 

In general, provided the elements of D and A are con­
tinuous functions of the interval of time of interest, 
(6.5) has a solution set (lnce, Ref. 19, pp. 71,72). We 
now show that under the additional constraint that S be 
of the form (5.8), (6.5) has a solution set provided D 
and A have continuous second derivatives. 

In block matrix form (6.5) is 

(6.6) 

Setting S2 at zero, the other submatrices are required 
to satisfy (5.9) and 

51 + S1 WT =R-253, S4 =R2S1 V 
• T 2' (6. 7) 

S3 + S3 W = - R- 51 + 54 U, S4 - S4 W = - S3 V. 

If T is a solution of 

(6.8) 

S1 =R-1T, S4 =RTV, 

53 = iRT(VW + WTV - V) V-1 - RT. 
(6.9) 

That (6.8) has a solution follows directly from Ince's 
theorem (the inverse of V exists since A is positive 
definite). Substitution for S1' 52, and S3 in the third of 
Eqs. (6.7) yields a second order equation which R must 
satisfy and this involves V. Hence the stronger condi­
tions are on D and A than in the general case. The re­
quirements (5.9) are satisfied to within an arbitrary 
constant matrix multiplier which may, without loss of 
validity, be taken as the unit matrix. 

Thus a Hamiltonian of the form (6.1) may always be 
transformed to the diagonal form (6.3) using a coef­
ficient matrix of the type (5.8). Using the technique of 
(5,15) and (5,16), the invariant is 

1= -HqT(S[S1 + 5[53) q + q TS[S4P + pTS[S3q + pTsIs4P], 

(6.10) 
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The same remark as for the anisotropic oscillator about 
the invariant matrix applies in this case. It is a matter 
of simple algebra to show that the wavefunction of the 
Schrodinger equation for (6.1) is 

</!mn(% Q2, t) = exp [ f t [iTT(S1 VS[) - TT(W)] dt'] 
to 

x exp [ - 2
i
lf qTSfS1qJ "0m(Q1' t) "0n(Q2, t) 

(6.11) 

in which "0m and lPn have the form of (4.3) and 

Q=S1q· (6.12) 

In the particular case when 

_ [wiU) 0 ] 
U - 0 wi(t) V=I, W=o, (6.13) 

s, ~ [:;' p~,J s, {:' _ °P,], (6.14) 

and (6.11) is the result (5.12) for the anisotropic os­
cillator. We note that the result (6. 11) applies equally 
well to higher-dimensional problems (with more /ii's) 
and provides a suitable generalization of Wolf's result. 

7. CONCLUSION 

In this paper we have examined some simple time­
dependent Hamiltonians of the harmonic oscillator type. 
They provide illustrations of the application of linear 
canonical transformations to quantum mechanical sys­
tems. In particular they indicate that the wavefunction 
of the Schrodinger equation for the Hamiltonian 

H = i(q T, pT)A(t) [~J + B(t)T [~ ] + C(t) 

may always be found, A translation will always trans­
form (7.1) to a homogeneous quadratic form which may 
then be treated as was (6.1). Since the linear term in 
(7.1) may be regarded as a forcing term, such treat­
ment provides an alternative approach to the examina­
tion of problems such as the dynamics of coherent 
states (cf. Mehta et al. 20,21). 

The Hamiltonians considered in this paper have all 
been positive definite. There has been some interest in 
recent years in nonpositive definite time-independent 
Hamiltonians (cf. Moshinsky et al. 22). The examination 
of such Hamiltonians when they are time-dependent and 
quadratic would be of interest, especially with regard 
to the existence of any characterizing symmetry groups. 
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Ground state properties and lower bounds for energy 
levels of a particle in a uniform magnetic field and 
external potential 
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The Hamiltonian H ( B), for a particle of mass /L and charge e in a uniform magnetic field of strength B 
in the z direction and an external axially symmetric potential V, is a direct sum of operators H(m,B) 
acting in the subspace of eigenvalue m of the z component of angular momentum L,. Let 11.( B) [A( m, B)] 
denote the smallest eigenvalue of H(B) [H( m, B)]. For V = - e 'I r (r = PtD, the attractive Coulomb 
potential, we obtain lower bounds l(m,B), for the spectrum of H(m,B) such that I(O,B» 1(0,0) = 11.(0,0) 
for B> 0, l(m,B» I(O,B) for m~O, and 1(lmI,B)-I(-lmI,B) = e~ml//L, l(m',B» l(m,B) 
if m'<m$,O. We show at least for an interval [O,B'> 0] of B that the ground state of H(B) is the 
lowest eigenvalue, 11.(0, B), of H(O, B) and is an almost everywhere positive function. If V = AI r' + r 2 for 
B = 0, 11.(0) = 11.(0,0) and the ground state wavefunction is an almost everywhere positive function with L, 
eigenvalue zero. However, for large A, we prove that for an interval of B away from B = 0, the lowest 
eigenvalue, 11.( -I, B), of H( -I, B) is below the lowest eigenvalue, 11.(0, B), of H(O, B) and that the ground 
state of H (B) is not an almost everywhere positive function. 

INl RODUCTION 

The Hamiltonian operator for a particle of mass /-I. 
and charge e in a constant magnetic field of strength B 
in the z direction, and an external potential V is 

H(B) = - ~/2/-1. + eBL/2/-1. + e2B2(x2 + i)}3/-1. 

+ V(x, y, z) (0.1) 

acting in the Hilbert space L2(R3). For a wide class of 
potentials, V, if H(O) has a lowest eigenvalue at the 
bottom of its spectrum, it is known that for B = ° the 
corresponding eigenvector can be chosen as an almost 
everywhere positive function and the eigenvalue has 
multiplicity one. t An important step in the proof of this 
result is that exp(- H(O» preserves positivity, since 
each factor involved in the Trotter product formula for 
exp(- H(O» preserves positivity. For B '" ° this fails be­
cause of the term eBL z/2/-1.. Thus questions arise about 
the nature of the ground state wavefunction and its 
eigenvalue ,,-(B)o 

We shall mainly consider potentials V which are func­
tions of p = (x2 + y2)t/2 and z. In this case H(B) is invari­
ant under rotations about the z axis and H(B) can be 
written as the direct sum of operators fi(m, B) (m = 0, 
± 1, ± 2, , •• ), where fi(m, B) acts in the subspace H(rn) 

of eigenvalue rn of the z component of the angular mo­
mentum, L z• In cylindrical coordinates 

H(m) = {exp(irn8) pt/2 f( p, z) : fE L2«0, oo)xR; dpdz)} 

and 

fi(m, B) exp(im9) pl/2f= exp(irn9) pt/2 H(m, B)j, 

where 

1 [ a
2 

a
2 

1 (rn eBP) 2J H(m, B) = 2/-1. ap'l - a? - :w- + p + -2-

+ V(p, z). (0.2) 

If we consider H(m, B) as a quadratic form and ignore 
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domain considerations, (0.2) indicates that >..(rn, B) 
~ >"(0, 0) and >"(m, B) > >..(- m, B) for m> 0. However, 
the question of whether >"(rn, B), m '" 0, is larger or 
smaller than >"(0, B) is more difficult, since the terms 
(In/ p + eBp/2)2 for different values of m are, in gen­
eral, not comparable for all p. Thus it is not clear if 
the Hamiltonian H(B) has "-(0, B) as its ground state and 
a ground state wavefunction which is an element of 
H (m = 0) and invariant under rotations about the z axis. 

In Sec, 1 we note that if V is a harmonic oscillator 
potential, then the ground state of H(m, B) is >"(0, B) and 
the ground state wavefunction is an almost everywhere 
positive function. We also give spectral results for 
V=O. 

For the attractive Coulomb potential V(r) = - e2/r , 
Jorgens2 has shown that H(B) is essentially self-adjoint 
on C'O(IR3), and that H(B) has essential spectrum 
[eB/2/-1., 00) and infinite discrete spectrum, with >..(m,B) 
~ "-(0, 0) = - e2/-1./2. In addition numerous variational 
calculations have been performed for >"(m, B) as well as 
for higher energy levels of H(m, B) (for example, see 
dos Santos and Brandi3 and the references cited there). 
These calculations give upper bounds for >"(In, B) which 
presumably approximate >"(In, B). They show "-(0, B) 
strictly increasing with B, and "-(- I m I, B) first de­
creasing and later increasing, and "-(- I m I , B) > "-(0, B). 
Lower bounds are necessary for an estimate of the 
error in these calculations. Weare not aware of any 
lower bound in the literature other than that of Jorgens, 
which is not good enough to verify the behavior of 
>"(m, B) indicated by the variational results. 

In Sec. 2 we obtain lower bounds l(m, B) for H(m, B) 
by two methods. These lower bounds have the same 
sort of behavior as the variational calculations, and 
they indicate that the ground state is a function in H(O) 
which is positive almost everywhere, at least for 
Y=B/e 3 /-1.2 < 8. It seems to us that Temple's inequalitl 
(see also Sec. 3 of the present paper) could be used 
in variational calculations without much extra labor to 
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obtain better lower bounds for X(O, B) for small B. Re­
call that Temple's inequality requires a rigorous lower 
bound T for the first excited level, such that T is great­
er than the upper bound for X(O, B), of the form (1/1, H1/I), 
which is provided by the variational calculation. One 
could take T equal to the first excited level of H(O, 0) as 
long as this is larger than (1/1, H1/I). However, our lower 
bounds for X(O, B) show that this is impossible for y 
greater than about 2.2. 

In Sec. 3 we give an example of a cylindrically sym­
metric potential for which X(O, B) > X(- 1, B) for values 
of B in an interval. Existence of a spherically sym­
metric potential where this happens is a more delicate 
question. However, we show using Temple's inequality 
for a lower bound for X(O, B) and a variational calcula­
tion as an upper bound for X(- 1, B) that X(- 1, B) < X(O, B) 
for the potential V =A/r2 + r2 for large A and an inter­
val of B. The ground state is not an a. e. positive func­
tion. In these examples the potentials are not bounded 
but we show by a limiting argument that unbounded po­
tentials are not necessary for this phenomenon to occur. 

We conclude in Sec. 4 with some remarks about the 
increase of the ground state energy for an arbitrary 
potential when an arbitrary magnetic field is introduced. 

1. HARMONIC OSCILLATOR 

In the case of a cylindrically symmetric harmonic 
oscillator 

V = e2A2(x2 + y2)/BJJ. + c2z2 

the eigenfunctions and eigenvalues of H(B) can be found 
explicitly. First note that the eigenfunctions of the 
operator H' obtained from H(B) by dropping the term 
linear in L z are, in Cartesian coordinates 

cI>iik(X, y, z) = Chi (JJ.WX) hJ(JJ.wy) hk(JJ.wz), 

where hn is the nth Hermite function, and the asso­
ciated eigenvalues are 

JJ.iJk = wei + j + 1) + Wi (k + t), 
where w = (B2 + A2)1/2 e/21l, w' = ec/21l, and i,j, k 
= 0,1,2,3,00'. 

Since H' is invariant under rotations about the z 
axis, this operator is reduced by H(m). Thus for each 
pair of nonnegative integers, nand k, there are n + 1 
orthogonal eigenfunctions 1/InmkEH(m), each of which is, 
for fixed z, the product of an exponential in p2 =X2 + y2 
and a polynomial of degree n in l:=x+iy and f. Now 
there are n + 1 monomials p of degree n such that p 
(exp(i<p)I;, exp(i<p)I;)=exp(im<p)p(~, "f), namely 
~(n+m)/2 ~(n-m)/2 for m =- n, - n + 2, ..• ,n- 2, n. 
It follows by a counting argument that functions 1/Inmk 
arise for just these values of m. 

The 1/Inmk form a complete orthonormal system, and 
each n an eigenfunction of both H' and L z, and there­
fore of H(B). The corresponding eigenvalues are 

Xnmk = (e!2/l)(B2 + A2)1/2 (n + 1) + mB + c(k + t). 
Thus the lowest eigenvalue of H(m, B) is 

X(m, B) = (e/21l){(B2 +A2)1/ 2( I m I + 1) + mB + c/2}. 

Note that, for large B, X(m, B) - (e/21l)[( 1m 1+ m + 1) B 
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+ c/2]. Regarding m as a continuous variable, we have 
oX/om ={B + (B2 +A2)1/2m/lm l}e/21l, so that X in­
creases with I m I. Thus the ground state eigenfunction 
is 1/1000 which is positive. 

If V = 0, H(B) and H(m, B) have the purely continuous 
spectrum [eB/2/l, 00) and [eB/21l(lml +m+1),00), re­
spectively. In this case the Hermite function in the vari­
able z goes over to the function exp(ikz)(kE IR) and the 
sum over k goes over to the integral over kE (- 00, 00) 
and we have the Fourier integral expansion in z. 

2. ATTRACTIVE COULOMB POTENTIAL 

In this section we consider H(B) with V = - e2/r, the 
attractive Coulomb potential. In subsection A we obtain 
lower bounds l(m, B) for X(m, B) by partitioning the 
operator H(m, B). In subsection B we obtain the bounds 
l(m, B) by using differential inequalities. In subsection 
C we discuss the properties of the lower bounds l(m, B), 
and by using a crude trial function we obtain an upper 
bound for X(O, B) which is less than X(-1, B) for an inter­
val [0, B'] of B. Thus the ground state of H(B) is X(O, B) 
at least for BE [0, B ' ], and a separate argument shows 
that the ground state eigenfunction is an almost every­
where positive function. We point out that crude varia­
tional calculations lead to the same qualitative behavior 
for X(O, B) and X(- 1, B). 

A. Partitioning of the Hamiltonian 

For notational convenience let y = B / e31l2, Q' = e2• 

For B = 0, taking into account the explicit solution for 
the Coulomb potential for fixed m, 1"" I m I, and the re­
sults of Sec. 1 for V = ° we have, as quadratic form 
inequalities on 1) (H( I m I )X1)(H( I m I» CH(m) XH(m), 

t:. /(i Q' /(iB 
- 211 + 2j; Bm + Bil B2(X2 + i) "" ~ [I m 1+1 + m], 

t:. Q' Q'
2

1l I I - - - - "" - ( m + 1)2 
211 r 2' (2.1) 

so that for any aE [0,1] 

H(m B) = (_ at:. _ ~) + (_ (1 - a) t:. 
, 211 r 211 

/(iBm Q'B2 (x2 2») 
+ ----s;:L + 8il + y 

""- Q'~11 {(lm~-:1)2 -y(vi1-a(lm l +1)+m]} 

=L(a, m, y). (2.2) 

Maximizing L(a, m, y) with respect to a, we obtain the 
lower bound l(m,B)=L(a,m,Y) with y2a4=[2(lml+1)-3]2 
x (1 - a). By the well-known formula for the roots of a 
quartic equation we can obtain I(B) as an explicit func­
tion of Y, or for each aE [0,1] we have y = [4(1- a)]1/2 / 
a2

• As a increases from ° to 1, y decreases from 00 to 
0. Both y and I can be calculated in terms of a. 

B. Differential inequalities 

The same results can be obtained using integration 
by parts. Suppose that <p E CO' ([ 0, 00) x IR), and h is a con-
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tinuously differentiable real-valued function on [0,00) 
X ffi. Then integration by parts in 

gives 

i ~f_~ If (-~ +h2+ ~~) rpdzdp~O. (2.3) 

Similarly, we have 

(2.4) 

if f is a continuously differentiable real-valued function 
on (0, 00) X ffi such that limp_ of(p, z) I rp(p, z) 12 = 0. To 
apply this to H(m, B), note that C~ (ffi3) is a core for 
H(B) and if cI> =pl/2 exp(imiJ) rp(p,z) belongs to C~(ffi3), 
then r-1ocl>/oiJ = ncl>/p must be bounded, which implies 
rp,,; Cpl/2 if m = 0, and rp,,; Cp3/2 if m *" 0. Thus (2.6) 
can be applied withf if limp" f(p, z) = ° for Q' = i 
(m = 0) or Q' = t (m *" 0). In particular, let 

- 13p I m I + i _ pb v'1--=-a 
f=2(lml+1)(p2+ z2)172+ p 2 

- 13z 

Then adding (2.3) and (2.4) gives 

a2 a2 m 2-t 13 b2(1_a)p2 
- apz - ~ + ---pr- - (p2 +Z2)172 + 4 

f32 f3b v'1 _ a p2 
~bv'1-a(lml+1)- 4(lml+1)2 - 2(p2+ z2)1I2(lml+1}" 

Now 

f3bvr=-a p2 f3b v'f::a 
2(p2+z2)172(lml+1)"; 2(lml+l) p 

ab2 1 (1 _ a) 132 

,,; 4 p2 + 4a (I m I + 1 )2 • 

Combining this with (2.5) gives 

f3" 
2jlH(m, b) ~ b(v'l- a)(1 m 1 + 1) - 4( 1m 1+1)2 + mb 

1 1 - a f32 
-"4-a- (Iml+1F 

132 

=b[v'T=ll (\m\+I)+m] - 4(lml+1)2a' 

(2.5) 

which is the same as (2.2), since a = f3/2jl, b = rciB, 
and y=b/jl3/2. 

C. Properties of I(d)and I(m, B) 

Here we give some properties of the lower bounds 
l(B) and l(m, B) and show that the ground state energy 
is '\(0, B) and the ground state wavefunction is positive 
a. e. We note that l(B) =1(0, B) so we only need consider 
l(m, B). It is useful to let 6 = v'1 - a; then y = 2 
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x ( I m 1+ 1)-3 (1 - 62 )-2 6 is an increasing function of 6. We 
first examine the dependence on y for fixed m. Since 
da/dY = - yei'( 1m 1+ 1)6/2[y2a3( I m 1+ 1)6 + 1], we find that 

dl( B)/d = jlIY
2 

[(1m l+l)4a
2 

] m, y 2 2 y+m 

jlIY 2 
=-2- [(\m\+1)6+m]. 

Thus, for m ~ 0, l(m, B) strictly increases with B. For 
B = 0, l(m, 0) = - (jlIY 2/2)( 1m 1+ 1)-2, the exact Coulomb 
energy levels. For m < 0, dl(m, O)/dy= jlQ' 2m/2 < ° and, 
for large y, dl(m, B)/dy behaves like (jla 2/2)( I m 1+ 1) > 0, 
dl(m,B)/dy=Ofor 6=-m/(lml+l). Thus for negative 
m, l(m, B) decreases to a minimum and then increases. 
For fixedB, since 6 only depends on Iml, l(lml,B) 
-1(-lml,B)=jlQ'2y lm l=eBlml/jl. Writingl(m,B) in 
terms of 6, we have 

l('f 1 m I, B) = (jlIY 2 /2)[(1- 62)-1(1 m \ + 1)-2 

- 26( 1 m 1 + 1)-3(1 - 62)-2(61 m \ + 1) 'f \ m \ )]. 

Treating I m I as a continuous variable, taking the 
derivative dl/ dim I with y fixed, and noting that d6/ 
dim I = 36(1 - 62}(1 + 362 )-1 ( I m 1+ 1 )-1, we find 

where P~(6) =± 363 - 362 ± - 1 and P~(6) < ° for 6E: [0,1). 
Thus (dl/ dim I)('f I m I, B) > ° and the lower bounds for 
fixed field yare strictly increasing functions of I mi. 
Thus we conclude that l(m', B) > l(m, B) for m' > m ~ ° 
and l(m', B) > l(m, B) if m' < m"; 0. In particular, 
we have l(m, B) > 1(- 1, B) > 1(0, B) for m *" 0, 1,' ". 

In order to show that the ground state is A(O, B), it 
is sufficient to exhibit i/J E: f) (H(O» with I i/J I = 1 such that 
u(O, B) '" (i/J, H(O, B) i/J) < 1(- 1, B). Previous variational 
calculations3 for '\(0, B) have been performed and the 
graph of 1(- 1, B) indicates that u(O, B) < 1(- 1, B) at 
least for y E: [0, 5]. For values of y = 25 and y = 100 these 
variational values are still above our lower bound 
1(- 1, B). Even for a crude variational wavefunction (an 
optimized Gaussian) we have u(O, B) < 1(- 1, B) at least 
for y in the interval [0,8]. 

Take i/J=Cexp(-ar2), C=(2a/1T)3/4. Minimizing 
u(O, B) with respect to a, we find u(O, B) = (jlIY 2 / 
2)(6a - 6v'2a!IT), where y2 = 16a2(3/2 - .f2{i(i). For y = 0, 
u(O, B) =- (jlIY 2/2)(8/3IT) < - jlIY 2/8 =1(-1,0); plotting 
u(O, B) numerically we find that u(O, B) < 1(- 1, B) at 
least for y in the interval [0,8]. If we had used the 
ground state wavefunction for H(O, B) as i/J, then u(O, B) 
= _ (Q'jl2 /2)(1- y2/2) and u(O, B) > 1(- 1, B) for Y'" 1. 5'. 
Since the ground state wavefunction rp E: H(O), it follows 
by applying theorem of Hoegh-Krohn and Simoni to the 
operator H(O, B) that rp is an almost everywhere positive 
function. 

3. POTENTIALS WHERE ;\(-1, B) > ;\(0, B) 

In this section we give examples of a cylindrically 
symmetric and spherically symmetric potential such 
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that X(- 1, B) > X(O, B) for an interval of B and the ground 
state eigenfunction is not a, e. positive, even though, 
for B = 0, X(O) == X(O, B) and the ground state is an a. e. 
positive element of H(m = 0). Referring to the form of 
H(m, B) in cylindrical coordinates, we recall that for 
two values of m the terms f(m, p) = (m/p + Bp/2)2 are not 
comparable for all p. However, if p is restricted to the 
interval [b, c] where b = (- 2m/Bo)1/2 and c> b, then 
f(p, m) <f(p, 0) for PE [b, c], m < 0, and B> Bo. Taking 
as our Hilbert space L2(Q), where Q = {p, z I b < P < c, 
- d< z < d} and defining H(m, B) with Dirichlet boundary 
conditions, we have H(O, B) > H(- 1, B) for B> Bo and 
V(p, z) bounded so that by the minimax principle X(O, E) 
> X(- 1, B). Thus the ground state I/J is a linear combi­
nation of vectors in H(m * 0). Let cP E H(m = 0) such that 
cp> ° a. e., then (cp, I/J) = ° and so I/J is not an a. e. posi­
tive function. 

To find a spherically symmetric potential such that 
X(- 1, B) < X(O, B) is more difficult since for a spherical­
ly symmetric region S, f(p, 0) does not dominate f(p, - 1) 
for all PE S. However, if the potential is V=A/r2 +cr2, 
C = 1, then we can prove that X(-I, B) < X(O, B) for suit­
able values of A and B. The values of A and E which 
work are indicated by an intuitive variational approxi­
mation for X(O, E) and X(- 1, B). First let us properly 
define H(B) and H(m, B) and determine the spectrum 
for B = 0. We define H(m, 0) as the direct sum of opera­
tors HI(m, 0), l=lml, iml+l,···, where HI(m, 0) is 
the self-adjoint closure of the differential operator 
- d2/dr"- + l(l + 1)/r"- + A/r2 + Cr"-, A, C> ° defined on 
Co«O,oo». HI(m,O) is self-adjoint by Theorem X. 11 of 
Reed and Simon. 5 We note that for E2 /4 < C that the 
term mB + B2p2/4 is a form-bounded perturbation with 
bound < 1 of the form associated with H(m, 0). We de­
fine H(m, B) as the unique self-adjoint operator asso­
ciated with this form sum. H(E) is then defined as the 
direct sum over m of the operators H(m, B). H(m, B) 
has a purely discrete spectrum with eigenvalues 

(3.1) 

wheren=0,1,2,"'andl=lml, Iml+l,···. As 
H(m, B) is invariant under three-dimensional reflec­
tions (parity), H(m, B) is reduced by the subspaces as­
sociated with He(m, 0) = LI even HI (m, 0) and H o(m, B) 
= Ll oddHI(m, 0). These subspaces are also reducing 
subspaces for H(m, B). We note that for large A, 
Xnl - Xnl' '" ,fCJjf(l -l')(l + l' + 1); in particular, XnO - Xn1 
'" - 2 ~C/A. The ground state eigenvalue is Xoo 
=v'c12+ (1 +4A)1/2] and the corresponding normalized 
eigenfunction is 

where A = 0!2 + a and N2 = 2a<+2C(a<+1)/2+1/ 4/41T ·1 ·3' 5 
···(20!+1). 

(3.2) 

We now give an intuitive argument based on upper 
bounds obtained from variational calculations for X(O, B) 
and X(- 1, B) which indicates that X(O, B) > X(- 1, B) for 
A large and an interval of B small but away from B = 0. 
For small B we expect the lowest eigenfunction of 
H(O, B) to be nearly radial. Thus we choose a radial 
function X to get a rigorous upper bound (X, H(O, B) X) 
for X(O, B). Since (X, x2, X) = (X, y2X) = (X, Z2 X) we have 
(X, H(O, B) X) = (X, [H(O, 0) + i(B2r2 /4)] X). For C = 1 we 
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find, taking X to be the ground state of H(O, 0) with 
C = 1 + B2/6 and using (3. 1), 

X(O, B) < (X, H(O, B) X) = (1 + B2 /6)1/2(2 + vI + 4A) == u(O, E), 

Similarly a rigorous upper bound for X(- 1, B) is given 
by (q" H(O, B) q,), where q, has the form q, =f(r) Y1_1(9, ¢) 
[Y1m(e, ¢) is the spherical harmonic] andf(r) is chosen 
to minimize 

(q" H(- 1, B) q,) == (q" H( - 1, B)q,) == (q" [H(- 1, 0) 

- B+f(B2y2/4)]q,), 

Choosing the minimizingf and taking C = 1 in H(m, E) 
we find from (3.1) that 

X(- 1, E) < (cp, H(-I, B) cp) = (1 + E2 /5)1/2(2 + v9 + 4A)-B 

==u(-I, B). 

Note that u(O, B) increases with increasing B;u(- 1, B) 
decreases to a minimum at B = B' '" 5/2 vA for large A 
then increases for B> B' 0 For large A, u(O, B') 
-u(-I,E')"'7/24v'A, u(-I,B')-u(0,0)"'750vA, and 
u(O, B') - u(O, 0) '" 25/24 vA. We find that the first cross­
ing, u(O, B) == u(- 1, E), occurs for B = b = 15(1 - (11/ 
15)1/ 2)/vA '" 2. 155/vA and u(O, b) - u(O, 0) '" 0. 774/v'A. 
Thus u(O, E) > u(-I, B) at least for BE (b, B'], 

For a rigorous argument we need a lower bound, 
1(0, E), for X(O, B) to replace u(O, B) in the above intui­
tive argument. We obtain 1(0, B) from Temple's inequal­
ity which states that 

X(O, B) "" (I/J, HI/J) - [c1/J, H21/J) - (I/J, HI/J)2J/[1l - (I/J, HI/J)] 

=1(0, E), 

where H =H(O, B), I/J is an approximate eigenfunction, 
II/J i = 1 and Il = Il (B) is a lower bound for the first ex­
cited level, 1l'(B), of H(O, B) which obeys Il> (I/J,HI/J). 
We note that if I/J is chosen as the eigenfunction for 
X(O, B), then 1(0, E) == X(O, B). By the minimax principle 
1l'(B) > Il '(0), so recalling that in the even parity sub­
space only even l's appear we may take (C == 1 in what 
follows) 

Il(B) = X02 = 2 + h5/4A. 

Taking I/J from (3.2) as the approximate eigenfunction, 
we find that 

i(l/J, p21/J) == (I/J, r"-I/J) = (2a + 3)/2, 

i(l/J, p2y21/J) == (I/J, y41/J) = 15(1/J, p41/J)/8 = (20! + 3)(20' + 5)/4, 

(I/J, HI/J) = CI/J, (Xoo + tB2p2) I/J) == Xoo + tB2(20! + 3)/2, 

(I/J, H21/J) = IHI/J 12:= 1 (Xoo + tB2p2) I/J 12 

_ x2 + Xoo B2 (20! + 3) ~ (20' + 3)(20' + 5) 
- 00 3 2 + 2' 15 4 . 

Substituting in Temple's inequality, we obtain 

leO B)==X B2 (2a+3)_ [B4 (2a+3) (2a+5 _ 20!+3).I 
, 00 + 6 2 4 30 36 ~ 

(2+25+4A)-(2+1+4A)-~~ (20'2+ 3»)J. 
For large A, a ",vA and 

1(0, B) '" (2 + vI + 4A) + B2:X [B4;: 

x('{! -~) / (Jx - B26M)J, 
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Now, recalling that from the variational calculation the 
minimum of 11(- 1, B) occurs for B =B' = 5/2 vA and 
X(- 1, B') < u(- 1, B') = 2 + -VI + 4A + O. 750/vA, we find 
that leO, B') '" o. 99B/-JA + 2 + vI + 4A and X(O, B') 
- X(- 1, B') ? [(0, B') - u(- 1, B') '" o. 998/VA - o. 750/vA 
== o. 248/-JA. This also holds for an interval about B' 
by continuity. Thus we have proved that X(- 1, B) 

< X(O, B) for this interval. The ground state of H(B) can­
not be an a. e. positive function, because it is orthogonal 
to /1(0) which contains functions positive a. e. 

The fact that the potential V+A/rZ +y2 is infinite 
at r == 0 and y = 00 is not crucial for showing that X(- 1, B) 
< X(O, B). We can take a sequence of finite cutoff poten­
tials, V"' which converge monotonically to V. By Theo­
rems 3.6 and 3c 15, of Kato, 6 Chap. VIII, any finite 
number of lowest eigenvalues of the Hamiltonian with 
V" converge to the corresponding lowest eigenvalues 
of the Hamiltonian with V. 

We remark that it is the specific relation between the 
coupling constants of the linear term and quadratic term 
in B that make the question of ground state inversion for 
H(B) a difficult one. If, for example, the linear term in 
B has a large enough coupling constant then the lowest 
eigenvalue in /(-1) will be below that in /(0, ). We 
conjecture that if the potential is radial and attractive 
(dV/dr> 0) and if H(B) has eigenvalues, then the lowest 
eigenvalue X(O, B) in the m = 0 subspace H(m == 0) and 
thus the ground state wavefunction is positive a. e. 

4. REMARKS ON GENERAL POTENTIALS 

It is clear from (0.2) that in the case of cylindrical 
symmetry the ground state energy with no magnetic 
field is strictly less than the energy with the (constant) 
field present. 2 Simon has remarked that for a general 
potential V the ground state energy does not decrease 
with the addition of a general magnetic potential a. 7 

Another argument for this can be given using the ideas 
of Sec. 2 B. 

Let f and a be real locally square integrable vector 
fields·on IR". Then for epee Co(IR"), 

IICY'-ia-f}epI12= 11(Y'-ia)epI12+ f(V' 01+ 1/12)(ep)2dx, 

(4.1) 

where Y' '1 is taken in the sense of the theory of distri­
butions, because 

II (V' - ia-/) ep 112 = II (V' - ia) ep 112 + liN 112 
- (Y' • ep, 1 ep) - (j ep, V' ep) 

= II (V' - ia) ep 112 - ff 0 V' I ep 12. 
It follows that if V is locally Ll and bounded below 

and if V" ! f 12 - V' • f + X, then the quadratic form for 
H(a) = - (V' .:.. ia)2 + V is bounded below by X, since the 
left-hand side of (4.1) is nonnegative. If u is the 
ground state of H(O) with H(O)u=Xu, then/=V'u/u is a 
natural choice, for 
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(4.2) 

Thus, (4.1) and (4.2) would give H(a)?- X if it was known 
that V'u/u is locally L2 and that the formal calculation 
(4.2) is correct. This can be done, but it is more con­
venient to consider F = V'u/(u + E), which is automatically 
square integrable, since uEf)(H(O»Cf)(V'). We have 
l::.u = (V - X) UE Ltoe, 3 and 

V'u 1 I Vu /2 Y' 0 -- == -- (V - X) u - -U+E U+E U+E (4.3) 

This can be justified by taking a sequence u" converging 
suitably to u. Then (4,1) and (4.3) give 

(V' - ia)2 + V _ EVU ? X 
11 +E 

but as E - 0, JEVU/(li + E) I ep 12 dx - 0 for any epee Co(IR"), 
so H(a) > X. 

Of course, one really wants a stronger result, that 
the lower bound increases when the field is added (and 
information about how much it increases. ) The identity 
(4.1) suggests the following argument for the increase 
of the ground state energy unless there is a gauge 
transformation which transforms H(a) into H(O). It can 
probably be made rigorous, but since it does not give 
numerical information we do not attempt this. 

Let ep be the ground state of H(a) and suppose the 
energy is X; then (V' - ia - V'u/u) ep = 0, or Y' (ep/tI) 
= ia(ep/u), so ep/u provides the required gauge 
transfor mation. 

This indicates that even when the magnetic field is 
zero, the ground state energy can rise in the presence 
of a vec tor potential a such that ~a • dr '* 21Tn around 
some closed path. This points to another physical effect 
of the vector potential. 9 
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We construct extensions for a class of Schwinger functions at noncoincident arguments to symmetric 
states on the Borchers algebra. Conditions are given for these states to be strongly positive. For strongly 
positive states the relation between uniqueness of the Euclidean measure, polynomial density, and self­
adjointness for the Euclidean field is examined. 

1. INTRODUCTION 

Success in recent years of Euclidean techniques in 
constructive quantum field theory poses questions as to 
the general mathematical relation between relativistic 
and Euclidean quantum fields. When sharp time fields 
exist this connection has been given by Nelson j and 
Simon2 encompassing the usual models in two and three 
space-time dimensions. For more singular theories 
expected in four dimensions, in Ref. 3, we showed the 
connection to be given by extending the Schwinger func­
tions of Osterwalder and Schrader4 to a symmetric, 
strongly positive state on the Borchers algebra over the 
underlying test function space. From strong positivity, 
the existence of a probability measure on real tempered 
distributions was derived and the Euclidean field ap­
peared as the related generalized random process. This 
was also shown independently in Ref. 5 and in a some­
what different formulation in Ref. 6. The central mathe­
matica 1 problem is then extension of a linear functional 
from a closed subspace of a nuclear *-algebra to the 
whole algebra, subject to requirements of symmetry 
and strong positivity. 

If one is only concerned with the existence of a mea­
sure, possibly complex, then necessary and sufficient 
conditions for the extension have been found by Borchers 
and Yngvason' as continuity (-r-continuity) with respect 
to a topology weaker than Mackey topology (T-continuity) 
for the field algebra. In Sec. 2 we settle an inter­
mediate question by showing existence of symmetric, 
positive extensions for all Osterwalder-Schrader 
theories which are order bounded. This is also a purely 
topological constraint requiring the singularity of the 
Schwinger functions at coincident arguments not to be­
come more severe as their order increases. Such is 
the case for all presently known models. Our method 
extends a technique first employed in this context by 
Yngvason7 and leads to a positive state dominated by a 
strongly positive state. We show in Sec. 3 that if the 
Euclidean field defined by the strongly positive state 
is essentially self-adjoint, then the dominated state 
is also strongly positive. Here it is necessary for us 
to return to the moment problem for the Euclidean mea­
sure to correct and extend results in Ref. 3 due to a 
gap in the proof of Lemma 3.4 of that paper. A maximal 
measure will be one for which polynomials in the 
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Euclidean field are dense in all Lp , 1 ~ P < 00, and an ex­
tremal measure one with density only for 1 ~ P ~ 2. We 
show that maximal measures are always unique and de­
fine self-adjoint standard representations of the sym­
metric Borchers algebra in the sense of Powers. 8 The 
Carleman criterion leads to a maximal measure and 
unique extremal measures arise when the Euclidean 
field is essentially self-adjoint. The converse question 
is posed in the last section as an open problem. 

2. POSITIVE EXTENSIONS 

Throughout our notation follows Ref. 3, which should 
also be consulted for motivation. Let 5 
= {I, 5 j , 52, ... ,5n, 000 } denote a symm-etric linear func­
tionalon 50 =EEln5(cn), where 5(cn ) consists of func­
tions in the Schwartz space 5n: =5(lR4n) vanishing with 
all derivatives whenever two arguments coincide. 50 is 
a closed subspa ce of the Borchers algebra 5: = EEln 3' n 

carrying the locally convex direct sum topology (T-tOpO­
logy) inherited from 5:=5j. In terms of finite se­
quencesf=fio,jj,j2, ••• ,jn, 0, "'}inS, foEG:: =50; 
the product 

n 

(j Xg)n(Xj, ••• ,Xn): =6 fk(Xj, ... ,Xk)gn_k(Xk+1>'" ,xn), 
- k=O 

and involution (j*)n(xj, ... ,Xn) =1 n(Xn, ... ,Xj) make 5 
into a complete-nuclear *-algebra with unit 1 -
={I,O, oO'}. A state TE5' is normalized, T(l)=l, and 
positive, !Jl*Xjl?-Ofor alljeS. For~c:}~, the ex­
tension problem is to find a symmetric, positive exten­
sion for~. In this paper all states will be symmetric 
without further comment. 

To define the order-bounded topology for J introduce 
Hilbert seminorms by 

h~N)(jn)2: = 6 f dXj 0 •• dXn 
I"'i I"N2 
1~i~n 

x n (1 + II xJ 112)NjID~j 0" D~nfn(x!"" ,Xn) 1
2, 

J=! 

wherein IIxI1 2 =x2 + x2 D'" = a I", I/ax"'o ax"'! • 0 0 ax"'3 o 'k k,Q k,1 k,3, 

I QI I = Ql o + 0.0 + Ql3; and according on 5 with 

q~N)(jn)2: =C~~N)(jn)2 by q(N)(j)~: =t q~N)(jn)2, 
- n=O 
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with {Cn} a sequence of positive numbers and N == (Nj,N2) 

an ordered pair of nonnegative integers. 

Definition 2.1: Tre5' is order-bounded if I~\[ll 
~q(N)(f), ire5, for some seminorm q(N). 

The result of this section is then 

Theorem 2.2: Let 5 re 50 be symmetric, normalized, 
and order-bounded. Then there exists a (nonunique) 
symmetric, positive extension to 5 with the same or-
der bound. -

Remark: If Nt = 0, a Euclidean invariant extension is 
obtained by averaging over the Euclidean group pro­
vided 5 is Euclidean invariant. In this way extS satis­
fies the extended Eucliean axioms (Ref. 3 Definition 
2.1). 

The proof generalizes a construction due to 
Yngvason. 1 Denote real functions and functionals by the 
subscript R and consider the Gaussian process 1>0 on 
5~ with mean zero and covariance 

(1)O(fl )<Po{f2»: == OS~(fl Xf2) 

== 6 J dx(1 + IlxI1 2(lD"'fl(X)D"'f2(X). 
''''' "'iN2 

The nonvanishing moments are even and define OS~n 
re 52n , n = 1,2, • ". Finally define o~ re 5' by the 
sequence 

~: =={A O, 0, A2Ci o5~, 0, .. , ,0, A2nC~ OS~n' 0, o •• }, 

in which {A2n} is a sequence of positive numbers. 

Lemma 2.3: For every seminorm of the form q(N) 

there exists o~ E 5' such that 

(a) each o5~n is symmetric and suppo5~n C IR 8n/ [2., 

(b) 05~n+l=0, n=0,1,2, "', 

(c) o~{J*Xl) Cj: q(N)(j)2V 1 re 5. 
Proof of Theorem 2.2: We use Lemma 2.3 to prove 

the extension theorem. As 50 = 1 the choice Co = 1 will 
be made in q(N). This means that 

~ 

q(N)(f*Xg) "" 6 ql~J(f;*Xgj) 
- - i,J=O 

~C~ d l hlN)(fI~ (E djh~N)(gJ) 
~(t c~hlN)(fj)2\1/2(t C]h~N)(gJ)2)t!2 

1=0 ) J=O 

: ==q(N)(j) (j(N)(,Ii), 

for two suitably chosen sequences {dl I en ~ d l dl + j ~ n} 
and {c n1. It is easy to see that one may take do = 1, (;5 
== 1 + 0 > 1. Now use Lemma 2.3 to find OS appropriate 
to the q(N) seminorm where as the proof shows AO 
== (1 + Eo)(1 + 0), EO> O. Consider the functional 5' =5 - 2 
and let extS' be any symmetric q(N) - continuous exten­
sion to 5. Setting extS = extS' + OS and EO = (1 - 0)/(1 + 0) 
to norm-alize ex~ gives the -desir-ed symmetric positive 
extension. 

Proof Of Lemma 2.3: Suppose qo(fo) = Co Ifo I; then put 
AO = (1 +Eo)c5 with EO> 0. The construction proceeds by 
induction with 05~n+t == ° at each step and suitable choice 
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of {A2n} to guarantee positivity. The even order distri­
butions are 

2n 
OS2n=A2nC; [1 (1 + Ilx} 112)N t /2 

}=1 

x 6 (Symmetrization of o(Xn - Xn+t)o(Xn_t - Xnd 
''''i' "N2 

1 "'I "n 

x 000 X (Xl _ X2n)D~nQ$iD~n-t Q$io 00 

(9D~15)D~;1 <ZD~}2Q$i 0 0 OQ$iD~nn) 

consisting of 2n !/2"12! distinct terms. One proceeds 
now to catalogue the contributions to OS~n(f~ xfn) which 
is to be the dominant positive term at the nth step. For 
this purpose it is convenient to use some new 
seminorms: 

6 J dYl" 'dY k 
'6j'''N2 
l~l::!ON 

n-2k 
Xdz • 0 odz dx 00 odx II (1+ II x" 112tl 1 k 1 n-2k j,l 

X n (1 + Ily 112)Nl(1 + liz 112)N1D~1Q$i'" 
J,1 J J 

Without loss of generality it will be assumed in the 
calculation that follows that f is symmetric in all argu­
ments and the notation [17/2 f= 17/2 for 17 even and 
(17 -1)/2 for 17 odd will be used. After some computation 
in which I? stands for the number of o-distribution con­
tractions setting variables equal in the set (Xl' ... , X n ), 

the positive even terms are a sum of positive quantities 

05 * x - A 17. [n/21 ( r )2 

2 nUn In> - 2n ~ [1?!2k(17 _ 21?)! 1 
X(17 - 21?)! I f3(~)(f )1 2 

",.12 n , 

where it should be pointed out q~N) Un)2 == I (3~76 Un) 12 
would be the only terms appearing without the sym­
metrization. 

(2.1) 

To carry out the induction step 11 - 1 to 17, isolate the 
highest nonvanishing component in 1= j + In and assume 
an induction hypothesis - -

os.,([*xj)"?- (1 +E
n
_1)q(N)(j)2 

[

""1 [1/ 21 ] 

+En-1"f2 E !i3lf;UIW (2.2) 

and 0 <E
n

_
l 

< En-2 < 000 <El <Eo. It is necessary to esti­
mate a positive lower bound for 

o§J1* x P = ofjJ] * x j) + o~n{f! x I n) 

+ 2Re05(j* xf), _ _ n (2.3) 
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which is accomplished by means of the expression 
n-l 

oS(j*xfn)= .0 OS2s<n._nXf,) 
- - sdnl2) 

wherein {n/2} = 11/2 for n even and (11 + 1)/2 for 11 odd. 
Repeated use of the Cauchy-Schwarz inequality produces 
the estimate 

10!i(1* xln) I 
n-l 
"" A2sC~ 

'" s=602) (C2._
n
C

n
) 

x 
[(2S~/2J( n1(2s-II)1 ) 

k~ (k 1 2n-s+2k (n - s + k) 1 (2s -11 - 2k) 1 

x I (3~:-)na U2s-n) I I (3~fj-S+k Un) I . (204) 

Substituting (2.1), (2.2), and (2.4) into (2.3) leads to 
the induction lower bound (203) in which 11 replaces 
11 - 1 provided the A2n are chosen to increase rather 
rapidly with 11. By distributing the crossterms evenly 
among the positive terms, sufficient conditions on the 
A2n are given by 0 < En < En_1 and A2n larger than any of 
the following: 

and for 11 even 

x (2r - 2k)1 (E n_1 - En)] 

for each 0,,; r"; 11/2 -1 and 0,,; k,,; r, while for n odd 
there is a similar expression with 11 - 1 replacing nand 
2r + 1 for 2r. 

Remark: The combinatorial estimates above illus­
trate that A2n increases roughly as exp(Agn) and this 
rapid growth dominates any increase from cn ' This is 
also the reason why this method yields easily positive 
rather than strongly positive extensions. 

In order to cast Theorem 2.2 in a Slightly different 
form, we recall the notion of strong positivity. If 
p:IRn_IR+ is a polynomial and{fl>/2, ••. ,jn} cSR , a 
positive polynomial on S~ is of the form p(w) : 
=P«W,jl)'o 0 0 ,(w,jn)bO for all w ES~. A state!. is 
called strongly positive if T(P) ~ 0 for every positive 
polynomial P. By oS(O<) denote the linear functional on 
,S whose components are oS~~) =<l'2nOS~n' <l' real, with 
odd components zero; then {A2J may be chosen so that 
o~ in Lemma 2.3 is strongly positive. This allows 

where p is a measure solving a Hamburger moment 
problem for the moments P2n+l =0, P2n=A2nC~, 
n = 0,1,2,0 0 0, and leads to bounds for the extens ions in 
Theorem 2.2 

In the next section we give conditions on oS which imply 
that ext!i is also strongly positive. -
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3. STRONG POSITIVITY AND SELF-ADJOINT 
REPRESENTATIONS 

In the ensuing discussion the polynomial algebra with 
complex coefficients over SR will be written as 
P (S R)' Given w E S~, ®"w stands for an element of 
S ~.R obtained by continuous extension from evaluation 
on elements in ®~S, where l(w): ='i:=o(®nw,j) with 
®ow: = 1. It is shown in Ref. 3 and independently in Ref. 
5 that for each strongly positive state!. on P (SR) there 
exists at least one probability measure Jl on the u­
algebra B generated by the Borel cylinder sets in S~ 
such that 

In general Jl is not uniquely determined by !.. Among 
such measures two particular types seems to playa 
central role. 

Delinition 3.1: A measure Jl is called maximal if 
PUR) is dense inLp(S~,B,Jl) for alll,,;p<oe. When 
this is true only for 1 ,,; p "" 2, Jl is called extremal. 

It should be pointed out that this differs from definition 
4.2 in Ref. 3. The alteration is needed as Lemma 3.4 
in Ref, 3 contains a gap. After showing polynomial 
density for the one-dimensional cylinder set measures 
VI' I ESR , in L,(IR,dvl ) for 1"" P "" 2, we then in­
advertantly assumed they in fact formed a basis and 
then used duality to deal with the remaining 2 < P < 00. 

Whether or not N-extremal solutions for v, have poly­
nomials with the basis property for p"* 2 is not part of 
the Riesz-Nevanlinna theory and appears to be an open 
question. For this the condition 

N 

sup 11.0 w (F,w) II ,,;M<oo, 11=0,1,2,000, 
IIF IIp:l n=O n (J 

is necessary and sufficient while the stronger 
L:oll wnllpll wn",IP_l < 00 is sufficient. {wn} are orthonor­
malized polynomials for v,. After these remarks let us 
recall Theorems 3,5, 4.3 of Ref, 3: 

Theorem 3,2' Suppose each one dimensional cylinder 
set measure vI' IE SR is maximal. Then Jl is unique 
and maximal. 

We shall shortly show the uniqueness of maximal 
measures 0 In fact the class of maximal measures is 
large. 

Proposition 303: Suppose T is a symmetric, strongly 
positive state on,S for whichL~=1!.(j2p)_1/2P=oO for 
each f E SR 0 Then the measure for!. is maximal. 

Proof: Notice that if Jl is a measure for Teach 
1 E j defines a multiplication operator on L-:;(Jl) and 
!.(j2P)l/2P = Ilfll2p' By Holder's inequality this is a non­
decreasing function of p so the Carle man quasianalytic­
ity condition satisfies 

~ ~ 

6 (1IfI12P)-1 =00 if and only if Z (1IfI12Kp)-1=00 
~l ~l 

for K = 0,1,2,0 00 0 Suppose VI is the unique solution to 
the one-dimensional moment problem associated with 
f; then polynomials infare dense in Lp(IR,dv/ ) for 
1 ""p,,; 2 (Ref. 3, Lemma 3.4). Pick some 2<q<oo and 
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F *- ° in L 0/0- 1 for which f F(t)tndvf(t) = ° when 
11"-'_0,1,2,···. Now F(s)=cJdvj(tleistF(t) is C~ and 
DnF(O) =0. The derivatives also obey estimates 

II Unp(O) II~' Ilin t IIF 11./ 0-1' 11=0,1,2,"', 

and again by llolder's inequality 111" II! 'c 1\ (n- l ll.II1"+III •. 
This means F is quasianalytic and identically zero by 
the Denj oy-Carleman theorem." By choosing ]( so that 
2K . fJ, F is identically zero and ZJ

f 
is maximaL The 

result now follows from Theorem 3.2. 

Relll(lYh: Maximality for Euclidean measures associ­
ated with Schwinger states removes possible pathologies 
in the Euc lidean field theory. For the weakly coupled 
P(¢)2 Euclidean quantum field theory and the even P(cfJ)2 
models with half-Dirichlet boundary conditions and a 
lower mass gap. FrohlichlO has shown the stronger 
analytic vector condition '[,;=0 >..PT.VP)/jJ! <cO in the case 
of both the nons harp time and time zero Euclidean field. 
Hence these theories have maximal measures. For an 
application of maximality see Ref. 11. 

Associated with T is a commutative, cyclic *-repre­
sentation of J by an algebra of unbounded operators on 
a separable Hilbert space fI F' If /l is any measure for 
T, this representation is unitarily equivalent to 
VIF,¢,lf, where/IE~Jl(rJ'·=L2(/l) and 

¢(l)J (u..') =l(w)J(w) 'rI l, ~(J. 

We follow Powers" and denote the closure of this rep­
resentation by ¢ and the adjoint by cfJ*. For notation on 
the Euclidean field, see (Ref. 3, Sec. 4). A linear 
manifold 1) ~ fiE is a core for the representation if ;P-f _ u 

= ¢ and cfJ is essentially self-adjoint if for the domains 
D(;j;) ='1) (cfJ * ) 0 For each /l there is an essentially self­
adjoint representation ¢", which extends cfJ in the sense 
of an extension out of/IF to L2(J.l). ¢",(l) is multiplication 
by 1 on the domain 

D(q),,)={J c L 2(/l) IlJcL2(J-L) 'rIleS1-

and the closure ¢", (1) is the corresponding' maximal 
multiplication operator on L 2 (J.l)0 Generally, different 
measures J.l lead to different extensions ¢", Moreover, 
¢" is standard in the sense of Powers8 for when 
1 c SR' q)", (1) is self-adjoint and the spectral projections 
commute 0 These features of the representation are 
related to properties of J.l in the following way. 

Proj)ositiol1 3 0 4: Suppose T is a strongly positive 
state on S with cyclic representation {fiT' 7f T, OTto If 
:;; T is self-adjoint, then the measure associated with T. 
is unique and extremal 0 

Proof: Powers (Ref. 8. Theorem 7.3) has shown that 
for 1 (,- '.s~, each 7f T(1 ) is self-adjoint and their spectral 
projections, say E L, commute. For linearly independent 
U~, ... ,fn1- cSR define Borel measures on IR" by 

One readily verifies these define a consistent set of 
cylinder set measures satisfying the continuity property 
(see Sec, 3 of Ref. 3) and so determine a unique 
probability measure J.l on B. If A =Al XA2 x·· • xAn is a 
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product of Borel sets on IR, then 

J.l(A) = (ElI (AI)'" E'n (An)OT' 0T)' 

where by the spectral theorem E'l (AI)' •• E, (An)OT E.fI T' 
This means there exists a sequence {PK}CP<5R) for 
which 

IIXA-PKII
L 2('" ) 

= II Ell (AI)'" Ejn (An)OT - P KOT II - ° 
as J( - 00. So J.l is extremal. Uniqueness for J.l follows 
from that for the vfl "'fn ' which is a well-known prop­
osition for the n-dimensional moment problem. 12 

Corollary: For each 1 ESR suppose polynomials are 
dense in L2+e(IR,dvf ) for some E > 0. Then TTT is self­
adjoint and standard. The resulting measure J.l for T is 
unique and P (SR) is dense in L 2(J.l), 1 ~ P < 2 + E. -

Proof: Again take a Bo re I set A = Al X A2 X· •• x An and 
choose a sequence of polynomials P"KVK)' 
g = 1, 2, . , . ,11, such that 

«/(11 IIp'''lHop''K_l 11(2+6)(2")/.)' 0<6<E. 

Then 

IIxA - P"l (fl)'" p"Jf) 112+6 
n 

< E II Pal(fl)"'P"K_1VK_l)(XAK-P"'K(fK») 1/2+6<E, 

which is the claimed density for polynomials. Finally, 
observe each 1fT (1) E L p (J.l) for all 1 ~ P < 00 and hence 
for j) = 2(2 + 6 )/6. This means P (SR) is a core for the 
maximal multiplication operator by f on L 2(Jl) so 1T T(j) 
is essentially self-adjoinL - -

Rem arh: We see in particular that maximal measures 
lead to self-adjoint standard representations of S with 
the uniqueness of the representing measure for I 0 A 
converse to Proposition 3 0 4 is well known for the one­
dimensional case but is open in more dimensions. The 
following corrects the Corollary to Theorem 4.3 in 
Ref. 3 and may be proved as above. 

Proposition 3.5: Suppose a strongly positive, sym­
metric state on S determines a unique measure J.l. Then 
P(SR) is dense inC(J.l) for 1~p<20 

Uniqueness for J.l implies the same for vf and hence 
polynomial density in L2(IR,dv

f
). 

Finally, let us consider the case in which one state 
is dominated by another 0 The extension Theorem 202 
suggests a situation for which this might arise. 

Theorem 3.6: Let ~ be a symmetric, positive state 
and T a symmetric, strongly positive state such that 
S(j*-XfhT(j*x/J, f~So Then, if{flT,7fT>0r} is 
essenUally-self-adjOlnt;-S is strongly positive and 
{ fl ,7f ,Ol essentially self-adjoint. s s sf 

Proof: Consider the sesquilinear form ~ (1* X 1i) 
= (d')1) , 1Ps(g» for which I~V*x...K) I ~ 11w T (1) II Ii>J!T(,g:)ll. 
We follow the notation in Ref, 3, po 44, wherein tiJ •• T 
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are respectively cosets in S/NE T corresponding to the 
§.'-

states S , T. There is a unique self-adjoint operator B 
which is positive, of norm, one, and such that -
(ws(l) , w) g)) = (?];T(,[) , BwT(g)). From (?];T(j) , Brr T(g) 
1./!T(!!» = (rr T(g)*J:T(1),B1PT(g», B commutes weakly 
with the representation rr T hence when f E SR both Band 
,fjj commute strongly with rr T(J). This means when 

1(w)?0, WES;, -

Next suppose til. E Ker(rr. (1)* + 0. Then, for allg E j, 

° = (1/). ' [rr. (1) - i] 1/. (g)) 

= lim(1PT (1n)' B[rrT(1)- i]1PT(g)) 
n 

for some sequence I];s(1)A..>./!s' From II.JB 1./!T'yn-f m) 112 
= II ?];s(L, -1m) W one has IP T EH T with B1./!T(1n) - fl3>./!T' 
This implies ..fBi/IT = 0; hence, dis E Ker(rrs (1)* ± il and 
11.(1) is essentially self-adjoint. Proposition 3.4 now 
requires uniqueness of the measure for S, one con­
cluding easily that ITs is self -adj oint and standard. 

Remark: Returning to the construction at the end of 
Sec. 2, if ex~ is to be strongly positive by Theorem 3.6 
it is necessary to show 6~ determines a self-adjoint 
repres entation, However any lack of uniqueness in the 
chOice of p shows up in nonuniqueness for the measure 
representing o~. Certainly by Hamburger's criteria the 
one-dimensional measures for such 6~ are never unique, 

4. TWO OPEN QUESTIONS 

Our discussion in Sec. 3 suggests two problems of 
interest for the Schwinger functional moment problem. 

(1) For the one- dimensional moment problem on 1R is 
there a characterization of solutions which are 
maximal? 

The class of maximal solutions is certainly large as 
indicated by Proposition 3.3 and most likely a descrip­
tion of these must use more than the moments alone. 
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(2) Let J1 be uniquely determined by a symmetric, 
strongly positive state Ton S. Then is {H T,ITT,S"2T} 
self-adjoint? The heart of the matter here is whether or 
not ITT has self-adjoint extensions analogously to the 
case of a single symmetric operator. If such extensions 
exist, then uniqueness of J.i. implies that there is at 
most one, J1 is extremal, and the extension is 
{H E' cP, I}. Now one needs ITT"" cP for which a theoretical 
criterion exists which is not easy to implement in 
practice. 

Proposition (SinKer, Powers B): Let P T : L 2(J1) - H T 
be orthogonal projection. Then rr T is essentially self­
adjoint if and only if PT(cp(1)± i)-lS"2T ED (ITT) for all 

1 E SR' 

The relation between the weak commutant of rr T and 
extensions beyond H T have been examined in the second 
paper of Ref. 5. 
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On the evolution equations for Killing fields 
Bartolome Call 
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The problem of finding necessary and sufficient conditions on the Cauchy data for Einstein equations 
which insure the existence of Killing fields in a neighborhood of an initial hypersurface has been considered 
recently by Berezdivin, Coli, and Moncrief. Nevertheless, it can be shown that the evolution equations 
obtained in all these cases are of nonstrictly hyperbolic type, and, thus, the Cauchy data must belong to a 
special class of functions. We prove here that, for the vacuum and Einstein-Maxwell space-times and in 
a coordinate independent way, one can always choose, as evolution equations for the Killing fields, a 
strictly hyperbolic system: The above theorems can be thus extended to all Cauchy data for which the 
Einstein evolution problem has been proved to be well set. 

1. INTRODUCTION 

In connection with several topics in general relativity 
(i. e., evolution, matching problems, propagation of dis­
continuities, stability, etc.) it is interesting to solve the 
following problem: ~ being a nonnull hypersurface in 
space-time and Cr; being a set of Cauchy data on = for 
the Einstein equations, how do we obtain the conditions 
on Cr; which insure the existence of Killing fields in the 
neighborhood of =? 

This problem has been considered recently by 
Berezdivin, Moncrief, and CoIl. Berezdivin1 (vacuum 
case, no lightlike isometries) starts from the analyticity 
of the Cauchy data and of the coordinate system, and 
gives no explicit evolution equations for the Killing 
fields. The methods used independently by Moncrief2 
(vacuum case) and Co1l3

-
5 (vacuum, perfect fluid, Ein­

stein-Maxwell cases) are essentially the same: We 
work in the Gauss coordinate gauge and we obtain the 
wanted Killing constraints on C r; from an evolution sys­
tem and under suitable differentiability conditions. In an 
earlier paper" I have given a coordinate independent 
formulation corresponding to a slightly different evolu­
tion system, 

The study of all the above evolution systems for the 
Killing fields reveals that their associated differential 
operators are of nonstrictly hyperbolic type. This situa­
tion is unsatisfactory for two reasons. On one hand, 
this fact means that the results obtained from these 
evolution systems are only valid when applied to Cauchy 
data C r; belonging to a particular class of functions 
(Gevrey class; see Ref. 7). On the other hand, it is 
generally assumed that, when we are dealing with a 
differential system corresponding to a certain physical 
situation, their characteristic manifolds represent the 
different waves that can propagate in the medium; never­
theless, in the present case, the characteristic mani­
folds associated with the above evolution systems can 
not, in any way, be interpreted as physical waves. Thus, 
it seems interesting to analyze when and why the above 
"anomalies" appear and, if possible, how to eliminate 
them. 

In the present article, after such an analysis, we 
prove, for vacuum and Einstein-Maxwell space-times 
and in a coordinate independent way, that it is always 
possible to choose, as evolution equations for Killing 
fields, a strictly hyperbolic system. This new evolution 
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system is exempt from the above two anomalous 
features. 

In Sec, 2 we shall select the basic equations and con­
struct the evolution system. Some common arguments 
on the initial data for the two cases considered below 
are explained in Sec. 3. Sections 4 and 5 are devoted 
to proving the strictly hyperbolic character of the evolu­
tion system for the vacuum and the Einstein-Maxwell 
space-times, respectively. Both sections conclude with 
the more general version (Theorems 1 and 2) that can 
be given for the results obtained in the previous papers 
(Ref. 1-5) from the point of view of the differentiability 
class of the Cauchy data and of the choice of local 
charts. 

2. EVOLUTION SYSTEM 

(a) Let (Vn+1 ,g), n> 1, be a Lorentzian manifold. In 
what follows we use a caret ~ for tensors over Vn+1 to 
avoid confusion with the tensors over the submanifold 
L: introduced below and, when a distinction between co­
variant and contravariant tensors will seem convenient, 
we shall use the superscript * for the latter. On the 
other hand, all the expressions are, in general, given 
in their covariant form, and it is to be understood that 
all the operators used below act over the covariant form 
of the tensor fields. 

Let us consider in (V +l,g) an arbitrary vector field 
s* and denote by i the Lie derivative of the metric ten­
sor i with respect to s*: i = L (s* )g. The classical ex­
pression for the Lie derivative of the Ricci tensor Ii in 
terms of [; may be written 

2LVi*)R=t:..i -L(l5i)g-\1dtri, (1) 

where t:.. is the Lichnerowicz laplacian for arbitrary 
tensors, B d, \1, and 15 are respectively the exterior 
differentiation, the covariant derivative, and the diver­
gence operator (up to a sign), and "tr" means "trace 
of." 

The e~ergy tensor T of V n+1 is related to the Ricci 
tensor R by the Einstein equations 

R= T- HrT'~' (2) 

Taking the Lie derivative of (2), we obtain 

L (s*)R =L (s*)1- + i tr{L x T - L (5* )T}g - itrT·i (3) 

because, for any second rank tensor Q, we have the 
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relation 

[L (5*), tr JQ = - tr(i x Q), (4) 

where x is the cross product (contraction over the even 
indices of the tensorial product). 

From (1) and (3) we can eliminate the term L (s* )R. 
n follows that 

Ai - L (of ); - \1 d tr i = 2/0.1- tr l' . i +tr(i x 1')g, (5) 

where we have written 

lW = L (s*)1' - ~ trL (s*)1" g. (6) 

Equation (5) is the starting equation for the study of the 
propagation of Killing fields. Its complexity comes 
essentially from the form of the tensor M which, ac­
cording t~ the definition (6), depends on the choice of T. 
In what follows, we shall assume that M depends only 
on i and not on its partial derivatives. Such an assump­
tion is sufficient for the two cases which we examine 
here. 

Let us consider now Eq. (5) as a differential system of 
of (n;2) equations in the (n;2) unknowns i, for a certain 
T. This system is degenerate (incomplete) in the sense 
that its characteristic polynomial vanishes identically; 
to see it, it is suffiCient, for example, to remark that 
the differential operator defined by its principal part is 
nothing else but the operator defined in the same way by 
the Einstein equations which, as it is well known, is 
degenerate. 

We are thus led to add, to the system (5), n+ 1 
supplementary conditions: The analogs, in the present 
case, of the n + 1 coordinate conditions added to the 
Einstein equations in the study of the Cauchy problem. 
By combination with (5) of the n + 1 supplementary con­
ditions, we shall obtain a Hew system which, in general, 
will be nondegenerate. Nevertheless, from the point of 
view of the applicability of the general existence and uni­
city theorems for partial differential equations, the 
appropiate properties of this new system are not yet 
insured. For example, in the Cauchy problem for the 
Einstein equations, the choice of the Gauss coordinate 
conditions gives an evolution system which is not strictly 
hyperbolic due to the presence of multiple (double) 
characteristic manifolds, those generated by the time­
like geodesics canonically defined by the coordinate 
system, whereas the choice of the harmonic coordinate 
conditions gives, as it is well known, a strictly hyper­
bolic system. 

(b) We must therefore look for n + 1 conditions for the 
system (5) playing a role similar to that played by the 
harmonic coordinate conditions in the case of the Ein­
stein system. To do this, let us consider the laplacian 
AS of the I-form s associated by the metric g to the 
vector field §*. If we denote by Qt the tensor obtained 
by matrix transposition of the components of the second 
rank tensor Q, we may write i=\1s+ (\1s)t, d5=\1S 
- (\1s)t so that tr£ = - 20s and i = 2\15 + ds and it follows 
that 

AS= (do + od)s = d(- hri) + 0(2\1s - I). (7) 

On the other hand, As may be also written as As = 0 \1 S 
+ i(§*)it and so the term 20\15 in (7) may be eliminated. 
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One obtains 

As= oi + ~dtri + 2i(s*)R. (8) 

We now eliminate oi between (5) and (8); taking into 
account that L (dtri)g= \1dtr£ + (\1dtri)t = 2'Vdtr£, it 
follows that 

Ai -L(As-2i(§*)R)g-2M+trT·i -tr(fx T)g=O. (9) 

We are thus led to take, as n + 1 supplementary condi­
tions, the following ones: 

As - 2i(§*)R = 0. (10) 

Let us denote by H the class of all vector fields 
verifying (10). As Eq. (10) is a strictly hyperbolic sys­
tem for §*, it follows that H is never empty. In addition, 
it is clear from (8) that all Killing fields belong to H. 
For the elements of H, Eq. (9) takes the form 

A£ -2I0+trf·£ -tr(ix T);= ° (11) 

which is a strictly hyperbolic system in £ under the 
assumption made on 10. 

3. <p CHARACTERIZATIONS 

(a) Let us consider, in a domain of (Vn• 1 ,g), a one­
parameter family of spacelike hypersurfaces with local 
equations cp(x) = const. On each hypersurface of the 
family, every (covariant) tensor of (Vn.ug) induces a 
unique (covariant) tensor of the same rank; in particular, 
the tensor g induced by g endows the hyper surface cp 
= const with a Riemannian structure (cp,g). 

Let J:i be the unit normal I-form to each hypersurface: 
i(fi*)ii = g(fz* , ii*) = 1, where i( ) stands for the interior 
product. It is easy to see that, on each hypersurface 
cp=const, every p-tensor Q (tensor of rankp) of (V n• U 

g) is biunivocally characterized by the following set of 
2P tensors of (cp,g): the (~) s-tensors (s=O,I, ... ,pi 
induced by the s -tensors of (Vn.1,g) obtained taking all 
the possible p - s interior products of n* with Q. Such a 
set will be called the cp characterization of Q. 

Thus, the cp characterization of a vector §* is the set 
{(7, s} where the scalar (7 is given by (7 '" i(ii* )5 and s is 
the covector induced by 5. The strict elements of the 
cp characterization of a second rank symmetric tensor 
A are {~, a ,A} where a = i 2(ii*).4 and a and A are respec­
tively the vector and the (second rank symmetric) tensor 
induced by i(ii*).4 and A. In particular, the cp characteri­
zations of ii and ,g are respectively {1 ,O} and {l,O,g}. 

(b) Let us consider now a timelike vector field fn* and 
let y be its canonically parametrized integral curves. 
Every pair [cp;m* J defines, in a natural manner, a class 
C[ q>, m* J of local charts of V n+l in the following way: a 
chart (u,1I) belongs to C[q>;m*] if it is adapted simultan­
eously to qJ and to m*, that is to say if in a neighborhood 
of every hyper surface cp = const and of every curve y 
one has 

.v([cp=constJn U)=IRnX{K}, 1I(yn U)={e}xIR, 

where K and e are respectively two fixed points of IR and 
IRn. Conversely, every "physically admissible" local 
chart (U,.v) defines univocally, in the domain U, a pair 
[cp;m* J: If XO is the timelike coordinate function of (U, 11), 
then q>=xo=const and m* =a/axo. 

Bartolom~ Call 1919 



                                                                                                                                    

(c) Let [<p, ~n*l be the pair defined by a physically 
admissible local chart (U, w) and let {Il, m} be the <p 

characterization of m*. The three strict components of 
the <p characterization of the Einstein equations (2) are 
equivalent to 

c 1 : tr(KxK) - (trK)2 + trR = - 2T, 

C 2 : 6[K-(trK)g]=-t, 

E 2 : arK = Il[R + 2S - pl- Vdll + L (nz* )K, 

where K, the extrinsic curvature of <p = const, is related 
to (Jyg by 

E 1 : ?yg=2IlK +L(m*k, 

{T, t, T} is the (strict) <p characterization of the energy 
tensor i, R is the Ricci tensor of g, and ay is the de­
rivative along the integral curves y of m*. It is under­
stood that the operator s tr, x, 6, and V refer now to 
the induced metric g. We have defined 

S~KXK-1(trK)K, p~T-1(trT+T)g. (12) 

(d) A local chart (U,w) defines a pair [<p;m*], but 
<p characterizations are, by definition, independent of 
ytz*. Let us denote by {a,s} and {>--,I,L} the <p characteri­
zation of Ii and L, respectively, and let us consider, 
for a moment, a local chart such that 111* = S*; in this 
chart we have obviously L=L(s*)g=ilyg=>L=ayg and 
thus, taking into account equation E1 

L=2aK+L(s*)x. (13) 

Since both members of (13) relate only quantities and 
operations defined on <p = const, it follows that expres­
sion (13) of L is also valid whenm* *- §*. 

On the other hand, as <p characterizations are linear 
mappings and [= V§ + (Vs)t, >-- and I must be linear 
combinations of a, s, and their partial derivatives. 
Denoting by 1> ("0) a linear homogeneous polynomial in 
its arguments and by x the set of all partial derivatives 
tangent to <p = const of a variable x, we may write, for 
arbitrary local charts, 

A=1>l(a,s; a,s; i\a, dys), 

1=1>2(a,s; a,s; ?ya, '\8). 

(e) Let us consider the tensor A = [ (m*)L and let 

(14) 

{a, 17, A} be its (j) characterization. In every local chart 
associated to a pair {<p, ZJ:l*] we have L (zJ:z*) = ily, and thus 
it follows immediately that 

0' = 1>1 (A, I ,L: ay A) , 

17=1>I(A,1 ,L; ayl), 

A= 2y L. 

(15) 

Let us suppose now that S* is a Killing vector: then in 
a local chart such that zJ:1* = §* we have, from E 2, 
P = ° where the quantity p is defined by 

/;= a(R + 2S - p] - Vda+ L (s*)K. (16) 

It is i.nteresting to relate the quantities P and A. From 
the expression of A given by (15), and taking into account 
(12) and the commutation rule 

lily, [(8*)]=L((\s*) 

we have 
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A = ayL = 2a(JyK + 2i\a 0 K + L (s* )ay;; + L (ays* );;. (17) 

The expressions of oya and ays in terms of >-- and I may 
be obtained from (14): they take the form 

iJ ya=1>5(A,I,a,s: a,s), ily8=1>fJ(A,I,a,s; a,s). (18) 

On the other hand, equation E1 gives ar;; as a linear 
function of a, sand s and thus Eq. (17) may be written 

(19) 

The terms a, s come in because in (17) there appear the 
spatial derivatives of the vector '\s*. Now, eliminating 
between equation E2 and (16) the <p invariant quantity 
R + 2S - P, it follows that 

2aCJrK = 21l[p + Vda - L (s* )K] - 2a(Vdllf L (m* )K] 

= 21lP + 1>8(a,s; a,s; a) 

and so Eq. (19) takes the form 

(20) 

But we know that for every Killing vector field /i* <=> 
{a, s} one has A: = 0, [= ° => A = I = L = A = P = ° and thus 
the polynomial term of (19) must be of the form 

q,9(A,I,L; X,f,Ll. 

The terms in L appear because of the terms in a and s 
in (20) and relation (13). Hence, the relation between 
A and P may be written 

A=nyL=2Ilp+1>9(A,I,L; -:\,I,L). (21) 

(f) Finally, let us consider the <p characterization 
{;3 ,b}of the vector field b=A§-2iCs)R; from (8), it is 
evident that it is of the form 

i3=1>lO(A,I,L: ~,f,L: ilyA,i\l,oyL), 

b=q,ll(A,I,L: ~,I,L: '\A,(Jyl,oyL). 
(22) 

The class H of vector fields considered above is just 
defined by i3 = IJ= 0. 

4. THE VACUUM CASE 
, A 

In the vacuum case, T = ° ~, R = 0, the evolution 
system (11) reduces to 

AL=O. (23) 

Let L: be an initial hyper surface which is covered by 
a set of adapted local charts and let (;;, K) I r; be a set of 
initial data on L: for the Einstein equations. Suppose that 
the equations LIr;=O andplr;=O, where L is given by 
(13) and P by (16), have a solution {a,s}!r;: then, accord­
ing to (14), we can associate with the pair {a,s}lr; the 
transversal derivatives ''rale and f!yslr; such that Air; 
=llr;=O. Since we now have AIr;=IIr;=LIr;=O, plr;=O, 
Eq. (21) gives AIr; = GyL 1 r; = 0. For the class H of vector 
fields defined above, which reduce here to 

(24) 

(22) gives ayAIr;= ° and ayL Ir; = 0, and thus from (15) we 
have 0'1r;=171r;=0. Since <p characterizations are iso­
morphisms, it follows that L lr; = 0 and ayL :'r; = 0 and, 
for these initial values, Eq. (23) has the unique solution 
i = 0 in the neighbor hood of L:: The pair {a, s} I r; deter­
mines a Killing field. 
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Since the systems (23) and (24) are obviously strictly 
hyperbolic, it follows that the above argument is valid 
for all Cauchy data (g-,K)ir; for wihch the Cauchy problem 
for the Einstein equations is proved to be well set. On 
the other hand, it is easy to see, from the same argu­
ment, that different solutions of the equations L = P = ° 
on 1:: give rise to different Killing fields in its neighbor­
hood. This result may be summarized in the following 
theorem. 

Theorem 1: A necessary and sufficient condition which 
insures that the vacuum space-time determined by an 
initial set {1::, (I?,K)} admits r linearly independent Kill­
ing fields is that the dimension of the vector space of 
solutions of the system 

2 aK + L (s* )g == 0, 

a[R + 25] - 'ilda+ L (s*)K == 0, 

in {a, s r on 1::, be r. 

5. THE EINSTEIN-MAXWELL CASE 

(a) The energy tensor of a Einstein-Maxwell space­
time is given by 

T==itr(Fxt)ii-FXF, (25) 

where F is the electromagnetic 2-form. 

On the other hand, it is easy to see that, for an arbi­
trary sec ond rank tensor Q, the commutation operator 
[L (5*), tr] is 

[L (5* ), tr ]Q = - tr[i x Q] 
and that, for two second rank tensors P and Q, the 
Lie derivative of the cross product may be written 

L (S* )(px Q)= L (s* )Px Q + pxL (5*)Q - pXL x Q. 
From these expressions it follows that the Lie deriva­
tive of the energy tensor (25) takes the form 

L (5* IT=<I>l(L) + ~tr[FxL (5* )F:tg 

- Px L (s*)F - L (5* )FX F, (26) 

where, as usual, <P ( ) denotes a linear homogeneous 
polynomial in its arguments. 

Now, let us introduce in (26) the 2-form 6 given by 

6 ""L (s*)p - rt * F (27) 

where * is the duality operator; the value of the scalar 
x is not important here and will be defined below. 
Taking into account the well-known identity 

.... .... ....... 1 .... .... 

Fx * F+ * FxF= itr(Fx* F)k, (28) 

one finds 

L (5*)T = if, l(L) - <p 2 (G) (29) 

with 

(30) 

and thus, from the definition (6) of M, it follows that 

M==4>3(L) _$2(6). 

Hence, for vector fields 5* belonging to the class H 
defined above, the system (11) may be written 
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(31) 

(b) In terms of the basic variables g, F of the 
Einstein-Maxwell space-time, Eq. (31) contains im­
plicitly the scalar x. Its definition will be taken from the 
following lemma. 

Lemma: If an Einstein-Maxwell space-time admits a 
Killing field 5*, then the electromagnetic field P 
verifies 

(32) 

where x is such that dx II f if F is null with fundamental 
null vector ~ f i\ df = 0, and x = const otherwise. 

For a nonull F, this result was partially obtained by 
Wooley9; Ray and Thompson1o and Michalski and Wain­
wrightll have given a proof based on the Rainich theory 
and Yaremowicz 12 has obtained it as a particular case of 
homothetic motions. McIntosh1 3 applies this result to 
obtain some general properties of certain Einstein­
Maxwell space-times. The extension to the null case 
has been given independently by Yaremowicz12 and 
ColI. 14 Nevertheless, the shortest proof, which is valid 
for arbitrary F is the following one: For a Killing field, 
Eq. (31), which is nothing else but L(s*)R=O, gives 
4> 2(6) = ° and from (28) and (30) it is clear that G = A * t 
is a solution. That this is the only solution may be 
easily seen by writing (30) as a Junction of the electro­
magnetic components of F and G with respect to an 
arbitrary timelike unit vector. Then, taking into account 
the definition (27) of 6, one obtains (32). The function 
x is obtained immediately by taking the exterior deriva­
tive of (32) and its dual under the assumption that F is a 
vacuum Maxwellian field, that is 

dF= 0, 6F= o. (33) 

(c) For an arbitrary 2 -form Q, the commutator 
[L (s*), * 1 is given by 

[L(s*), * ]Q=*(LxQ - QXL - ~ tr£· Q) 

and thus, by differentiation of (27) and its dual, taking 
into account (33), one finds 

dG=-d"Y./\* F, 66=* (dl't,\ F)+4,5(L), (34) 

where, asysual, <$5(i) stands for terms which are 
linear in L. Using the definition of rt given by the 
lemma, (34) reduces to 

dG=O, 

6G=$5(i). 

From (35) it follows that there always exists a local 
1-form a such that 

da=6, 6&=0 

and, in terms of &, (36) gives 

~&=4>5(i). 

The coupled system {(31), (38)}, that we write as 

(35) 

(36) 

(37) 

(38) 

~[+<$4([)_<$2(d&)=0, ~&_<$5([)=0 (39) 

is now the evolution system for the study of Killing 
fields on the Einstein-Maxwell space-times. It is easy 
to see that it is a second order strictly hyperbolic sys-' 
tem with indices s(i) = s(d') = 2 for the unknowns and 

Bartolome' Call 1921 



                                                                                                                                    

indices f(AL)=I(Aa)=l for the equations (for a simple 
definition of strictly hyperbolic systems, see Ref. 15). 

Taking into account the local equivalence of the sys­
tems {(35), (36)} and {(37)}, it is clear that in order to 
insure the existence of Killing fields we must take 
ilt;=O, ori1t;=0, GIt;=O as initial data for the system 
{(39)}. By an argument similar to that made in the 
vacuum case, it is possible to show that the conditions 
LIt;=O, orL1t;=0 are equivalent, in terms of the Cauchy 
data for the Einstein equations and in terms of the L: 
characterization {a,s} of the Killing fields, to 

2aK + L (s*)g= 0, 

a[R + 25 -p) - 'ilda+ L (s*)K= O. 

The explicit expression for the condition 61 t; = 0 is 
somewhat longer to obtain: Let us express the first 
element a of the <p characterization {a, b} of (j, obtained 
by induction of the vector fields a = iUi)(j, 6 = i(ii) * G, in 
terTs of a,s,g,K, and of the <p characteri~ation {e,h} 
of F, obtained in a similar way to that of G; and then, 
let us eliminate the terms in ore using the rp characteri­
zation of the Maxwell equations (33). The result is 

a(e,h)=L(s*)e -""11 

- a[*rlh +trK· e - 2i(e)K) + i(dah lz. 

By duality, we obtain b(e,h)=a(h,-e). Since GIt;=O 
<=> {alt;=O, blt;=O}, we have the following theorem. 

Theorem 2: A necessary and sufficient condition which 
insures that the Einstein-Maxwell space-time deter-
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mined by an initial set {L:, (g,K), (e,h)} admits r linearly 
independent Killing fields is that the dimension of the 
vector space of solutions of the system 

2aK + L (s)g= 0, 

a[R + 25 -P) - 'ilda+ L (s)K = 0, 

L (s)e =""h + a[* dh + trK' e - 2i(e)K]- i(da)* h, 

L (s)h =""e + a[ -*de +trKo II - 2i(e)K) + i(rla) * e, 

in {a, s} on L:, be r. 
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It is shown that the Wess-Zumino supergauge algebra can be obtained from the theory of 
automorphisms of a complex structure on spacetime. and that this is related to a formal geometric scheme 
of quantization. The geometric interpretation requires h to be proportional to the square of the basic unit 

of length. 

I. INTRODUCTION 
Recently considerable interest has been shown in 

supergauge theories, both from the point of view of the 
classification of graded Lie algebras1,2 and of their 
application to geometry and gravity3-10; however despite 
the fact that GLA's first appeared in differential geom­
etry the precise status of supergeometries and super­
gravity remains uncertain, and it is with this question 
that this paper is concerned, through the theory of 
automorphisms of G-structures. 

To date two initially distinct approaches to super­
gravity have been adopted; the first is a Kaluza-Klein 
type formalism3- 6 in which the methods of Riemannian 
geometry are applied to a superspace possessing a sub­
space of Majorana spinors, while in the second local 
supergauge transformations are shown to imply general 
covariance and hence gravity. 1-10 The first method has 
proved successful in the theory of unified fields, with a 
Weinberg-Salam type unification of gravity and elec­
tromagnetism3 and a possible description of the Yang­
Mills field through the supermetric components g/Joo" 
where 0 ~ p, ~ 3 is a space-time index and 0' a 
Majorana spinor index, while the local supergauge 
method gives a consistently coupled Einstein-Maxwell 
theory10 and the hope of cancellations of divergences in 
the full quantum theory. This difference of approach 
mirrors a difference in approach to the ordinary theory 
of gravity, namely general relativity versus local 
poincare gauge invariance, 11 and this paper shows how 
supergauge transformations arise in a third such ap­
proach and how they are related to a geometric theory 
of quantization, 

The method used here is one of broken gauge invari­
ance using GL(4, JR)/O(l, 3) which was shown by the 
author to arise in the frame bundle description of the 
metric and used in a geometric theory of formal quan­
tization. 12,13 There are two GL(4, JR) groups involved 
in the theory of gravity, one is that of general linear 
basis frame transformations and the other that of non­
singular infinitesimal coordinate transformations and 
it is the breaking of the first of these which describes 
the metric field. The local Lorentz transformations 
constitute a subbundle of that of general linear frames, 
and the effect of requiring invariance of the Lagrangian 
under local Lorentz transformations is to relax the 
condition that the connection in the frame bundle be 
the unique metric connection and thereby to introduce 
torsion. Local transformations correspond to elements 
of the fibers isomorphous to JR4 associated with the 
bundle of general affine frames with structure group 
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JR4 ® GL(4, JR), but because of the presence of the 
canonical 1-form of the frame bundle they have no 
dynamical significance in the purely geometriC theory 
and serve merely to introduce a choice of local coordi­
nates whereas for an arbitrary principal fiber bundle 
with isomorphous structure group they would lead to an 
independent Yang-Mills vierbein field, 

The geometric scheme of formal quantization is based 
on the method initiated by Segal14 in which the basic 
structures required are complex and Hermitian struc­
tures on the phase space of the system to be quantized, 
and on Kostant's closely related theory of quantization 
of sections of a complex line bundle. 15,16 Such structures 
arise naturally in the frame bundle description of 
geometry and were used to outline a formal theory of 
quantization of space-time. A complex structure J on 
JR4 is a linear endomorphism of JR4 such that J2 == - 1, 
where 1 denotes the identity transformation, and de­
fines a reduction of GL(4,JR) to GL(2, <1:) where an ele­
ment (A + iB) E GL(2, <1:) corresponds to 

where A and Bare 2 x 2 matrices and J is in canonical 
form, The reduction of GL(4, JR) to 0(1,3) defines a 
pseudo-Riemannian metric structure g(X, Y), X, YE JR4, 
and the special feature of this geometry is that this is 
Hermitian with respect to the complex structure J im­
plicit in the definition of spinors belonging to the group 
SL(2, <1:), Cohomological aspects of this quantization 
scheme can be examined by application of the Kostant 
technique16 to sections of the line bundle with structure 
group GL(2, <I:)/SL(2, ([;), On its own this does not give 
a full quantum theory and must be supplemented by 
further measures, but it does lead to supergauge trans­
formations as its automorphisms~ 

In Sec, II the Bose sector of the Wess- Zumino super­
gauge algebra 11 is shown to come from the standard 
theory of automorphisms of a complex structure, 18 while 
the subalgebra preserving the Hermitian structure con­
sists of the Poincare algebra, In Sec, III the use of the 
Segal technique for Fermi-Dirac quantization is shown 
to be related to a four-component Majorana spinor 
formulation of geometry related to local twistor theory, 
thereby clarifying the relationship between the Wess­
Zumino supergauge algebra and twistors noted earlier 
by Salam and Strathdee o 19 The significance of the Wess­
Zumino transformations is that they preserve the com­
plex structure and hence the distinction between the 
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creation and annihilation operators of the formal 
geometric qua~tization theory, while the Volkov-Akulov 
subalgebra preserves also the magnitude of the com­
mutation relations, 

II. BOSE SECTOR 

A G-structure is defined18 to be a differentiable sub­
bundle with structure group G of the bundle of general 
linear frames. As mentioned in the introduction the 
main G-structures to be considered are the pseudo­
Riemannian metric structure and the almost complex 
structure with G ==80(1, 3) and GL(2, (1;) respectively. 
The light-cone structure, which is often regarded as 
fundamental to quantization, is a CO(l, 3)-structure in 
this formalism, and differs from the almost complex 
structure by an additional phase factor corresponding 
to the one-parameter group of transformations whose 
real generator is the almost complex structure J, where 
J2 = _ 1. A spinor structure is defined up to a sign as 
an SL(2, (I;)-structure, but if this sign ambiguity is to be 
removed so enabling distinction between positive and 
negative energy spinors, the spinor structure must be 
defined as a sub bundle of the bundle of metalinear 
frames20 with group ML(2, (1;), where ML(2, (1;) is the 
double covering of GL(2, (1;) corresponding to the sign 
chosen in taking the square root of det(g), grc=. GL(2, (1;) 
in defining spinor transformations. The close relation­
ship between metric, spinor, conformal (or causal), 
and complex structures is unique to the signature of 
space-time, and in a Riemannian space-time there 
would be no possibility of a covariant Segal-type quan­
tization since 0(4)nGL(2,(I;)==U(2). 

Automorphisms are defined for integrable G-struc­
tures where a G-structure over the base space Ivl is 
said ~o be integrable if every point of M has a coordi­
nate neighborhood U with local coordinate system 
(XO, ' •• ,x3) such that the cross section (3 13xo, •.. , 3/3x3

) 

Over U is a cross section of the G-structure over U. 
Every GL(4, ffi,}-structure is integrable, but in general 
integrability requires the vanishing of some tensor 
field· the Riemannian curvature for an SO(l, 3)-struc­
ture' the conformal curvature for a CO(l, 3) structure, 
and ~he Nijenhuis tensor N(X, Y) for a GL(2, q:)-struc­
ture, where 

N(X, Y)=2{(JX,JY)-JlJX, Y)-JlX,JY)-(X, Y1}, (2.1) 

where X, Y E 1R4. Since the Nijenhuis tensor is related 
to the torsion tensor of an almost complex connection 
(2.2) below, a sufficient (but not necessary) condition 
for integrability of a GL(2, (1;) structure is that there 
should be no torsion 

N(X, Y)=2T(X, Y)+2J(T(X, Y) 

+ 2J(T(JX, Y) - 2T(JX, JY), (2.2) 

where T(X, Y), X, Yrc=.IR4, denotes the torsion tensor, 

A vector field X on M is an infinitesimal automor­
phism of a G-structure P if it generates a one-param­
eter group of automorphisms of P, and hence if the Lie 
derivative with respect to X of the corresponding tensor 
field on M vanishes. Thus for the complex structure 
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tensor J 

LxJ=O (2.3) 

or equivalently 

[X,JY)=J([X, YD, VYrc=.D(M), (2.4) 

where D(M) is the space of vector fields on M. 

For the present approach automorphisms are con­
sidered in terms of their local behavior, for which 
there is no loss in generality in taking M =: lR4 so that 
any G-structure can be expressed as 1R4 x G. Any 
vector field X can be expressed locally as a power 
series 

3 

X=:6 x'"a/ax'", 
'" =0 

(2.5) 

where 

and the coefficients a::
1
• oo jJ. k are symmetr.ic in the sub­

scripts. X is an infinitesimal automorphIsm of a G­
structure iff the matrix (ax'" lax V), 0 ~ )1., v ~ 3, belongs 
to the Lie algebra of G, and hence iff for each fixed 
112 00

' Ilk the matrix a::
1
"',"k belongs to the Lie algebra 

of G. For some groups G this is trivial in the sense that 
the coefficients are necessarily zero for k:> 1, but this 
is not always so, and a prolongation of the Lie algebra 
G may be defined having a graded structure L j G j' 
j = 0,1,2,00', whose order is said to be the first posi­
tive integer j such that Gj =: 0, The jth prolongation Gj 

is defined as the space of symmetric multilinear 
mappings 

ffi4 x ' • 'x ffi4 - ffi4 

(j + 1) times 

such that for each fixed Vi' • , , , Vj ,'" 1R4 the linear trans­
formation vrc=.lR4 t-- t(v, vi" 0', vj)rc=.1R4 belongs to G. 

In the cases of Riemannian or pseudo-Riemannian 
structures this prolongation is trivial, with G1 = 0, and 
the theory of infinitesimal automorphisms of the G­
structure is that of Killing vector fields (of flat space). 
The first nontrivial case is that of a conformal struc­
ture, i. e., G:= CO(l, 3). Only the dilatation subalgebra 
of G prolongs, and G1 consists of the four derivations 
~ 2,si=O lij of the scale factor t 2:;t;' 0 These f0u.r elements 
commute with each other and generate the LIe algebra 
of special conformal transformations (or "accelera-

t . h lB tions"), while G2, can be shown 0 vams . 

The Lie algebra of GL(2, (1;) regarded as a real sub­
group of GL(4, lR) via the mapping 

(A + iB) ... (~B !), 
(where A, Bare 2 x 2 real matrices) is equivalent to 
that of CO(l, 3) with the addition of an element corre­
sponding to J. 

J= 

where 12 denotes the 2 x 2 unit matrix. This element is 
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skew-symmetric, and so does not have any prolonga­
tion' hence the prolonged Lie algebra of gl(2, 0;) is iso­
mo:phous to IR4 EElU(l) EB CO(l, 3) EBIR4* '" U(2, 2). The 
Bose sector of the Wess- Zumino GLA appears there­
fore in the geometric quantization scheme as the in­
finitesimal automorphisms of the complex structure J. 

Infinitesimal coordinate transformations appear in 
this formalism as the elements of the prolonged Lie 
algebra of GL(4, IR) which is of infinite type, thus they 
generate automorphisms of the bundle of general linear 
frames. 

III. FERMI SECTOR 

In addition to the usual automorphisms of the complex 
structure considered in the previous section, it is also 
preserved by certain spinor transformations. The 
ability of the abstract quantization scheme to treat 
bosons and fermions in a unified manner results from 
the standard decomposition of the Hermitian metric 
g(X, Y) into real and imaginary parts. 

g(X, Y) = S(X, Y) + iA(X, Y), 

where X, Y E IR\ and 

S(X, Y) =S(Y,X) 

A(X, Y)=-A(Y,X)=-S(JX, Y). 

(3.1) 

(3.2) 

(3,3) 

In principle this means that the metric can be used to 
define two formal quantum theories with the commuta­
tion relations 

exp(irp(x)] exp(irp( y)] = exp(iA(x, y)] exp[irp( y)] exp[i rp (x) ], 

(3.4) 

<J!(x) <J!(y) + <J!(y) <J!(x) =S(x, y) 1, (3.5) 

where (3.4) is the Weyl form of the commutation rela­
tions avoiding the basic unboundedness problem of the 
Bose operators, These two quantizations were consid­
ered elsewhere12 and their significance here lies in the 
relation of (3.5) to Majorana spinors. 

It was shown12 that as a result of the Cartan isotropic 
vector - spinor correspondence in three dimensions21 

3 
(t A) _{Xi I ~ (xi)2 0= o} 

1:1 
(3.6) 

a formal quantum theory (3.5) could be written in which 
the Dirac gamma matrices acted as formal quantum 
operators for points of 3-D hypersurfaces. The space 
of spinors on which the Dirac matrices act is the direct 
sum of left- and right-handed 0;2, where the space of 
two component spinors corresponds to the mapping 
GL(4,IR) -GL(2, 0;) defined by the complex structure 
J. Since J defines a 4-orientation, the two spaces o;~ 
and o;i must have opposite time orientation in addition 
to opposite chirality. This formalism was compared 
with the real Dirac algebra approach to space-time of 
Hestenes22 in which the physically uninterpreted quan­
tity (i) in the Dirac equation was represented by Y5 in 
the Dirac algebra, and in the present case 0;4 is the 
complexification of the IR4 space of Majorana spinors 
with respect to Y5' 
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The Majorana spinors so defined determine a fiber 
isomorphous to JR4 over each point of space-time, and 
together these fibers constitute a spinor bundle of meta­
linear frames with structure group ML(2, 0;), where 
ML(2,0;) is the two-fold covering of GL(2, 0;) corre­
sponding to the choice of sign of the square root of the 
determinant of elements GL(2, 0;) taken for the spinor 
transformations. Globally the existence of the meta­
linear frame bundle requires the cohomology condition 

H2(j'vl, Z2) = 0, where M denotes space-time. 20 The 
Majorana spinor bundle is the spinor analog of the 
tangent bundle which is the associated vector bundle 
with standard fiber IR4 of the general linear frame 
bundle LUj,l) with structure group GL(4, IR). Local 
spinor transformations 

are defined vertically on the fiber 1T-1 (x), and so pre­
serve the complex structure J. 

Supergauge theory is very closely linked to the spinor 
formulation of geometry, as is most evident from the 
two-component spinor formations of Ferrara et al. 23 

This includes the basic anticommutator 

(3.7) 

where P". is the momentum operator and u,,'1 the Van 
der Waerden symbol where the bar denotes the 
Hermitian conjugate, and the relation of dotted to un­
dotted spinors is 

5;=(S,,)*, (5")*=5,,. (3,8) 

Formula (2.7) may be inverted to give 

(3.9) 

This is similar to the usual Penrose two-component 
spinor description (3,10) of a vector x". except for an 
extra term 

(3.10) 

Since the spinor components SCI., Sa define a basis the 
commutator (S", Sa] satisfies 

(S""Se] =E",a, (3.11) 

where Ea:8 is the Levi-Civita symbol, so that P". differs 
from x". by an extra component in the spin plane of the 
spinor, The significance of this is that whereas the 
commutator [x'" ,x".] vanishes, LX"', P".) does not, in 
accordance with quantum mechanics. 

A similar formalism exists for the Majorana spinor 
formulation, thus inverting the anticommutator 

(3.12) 

where C denotes the charge conjugation matrix for the 
representation chosen, gives 

(3.13) 

The Majorana spinor formulation of geometry does 
not seem to have been fully investigated, and it may be 
noted that instead of using the conversions of vector to 
spinor formalisms employing a summation over spinor 
indices, a homogeneous function approach more 
analogous to that of twistor theory may be adopted, 
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which is essentially the defining relation for the 
Maj orana representationo 

Using the single complex variable form of the homo­
geneous functions the relationship between the vector 
and Maiorana representations is given by the theory of 
covariant vector operators for SL(2, <r)o 24 An operator 
T(x 1 z), where x and z are complex variables, is a co­
variant vector operator if for any pair of functions 
f) ~ [)x and </YE [) -x' 

f(x) == J 8(z) T(x Iz) </J(z)dz (3.14) 

is an element of the space [)x* where x* == (2, 2) and if 
the operator equation (3.15) is satisfied 

T~~l T(x) Tax == (~2X + a.2)(a12x + a22) T(xa), (3.15) 

where (alJ)~SL(2,<r), 1~i,j~2, and[)x withx==(n1,n2) 
is the space of homogeneous functions such that for 

8(Z)Ef)x, 

T ;8(z) 

== a12 z + an a12z + an () -( )nl-1 ( )n2-1 (allZ + a21 ) 
a12z + a.2 

(3.16) 

The Majorana representation used here has X, X' 
==± (~, -~) and belongs to the principal series of rep­
resentations, while the other Majorana representation 
series with X == (- ~, - ~) belonging to the supplementary 
series is infinite dimensional and does not fit into the 
geometric quantization schemeo 12 For the case 
X ==±G, -~) the covariant vector operator T(x Iz) has 
the respective forms 

~ 

T(x Iz) == (z - x)1/2(Z - x) ~ (z _ x)112 , az 

T(x 1 z) == (z - X)l/ 2 (z - x) : z (z _ x)l / 2 , 

where bar denotes complex conjugationo 

(3.17) 

(3.18) 

The formalism presented so far here has not depend­
ed on the essential feature of supergauge theory, namely 
that the supergauge transformations should generate a 
graded Lie algebra, thereby enabling the possibility of 
a unified non-Abelian gauge theory of both bosons and 
fermions. L = L kEN Lk is a graded Lie algebra with index 
set N if given a bilinear map [, ] of LX L - L the fol­
lowing conditions hold: 

(a) [Lk,L1)CLk+ l , 

(b) [x,y) == (_1)kl[y,X), 

(c) [x,[y,z]]=[[x,y),z]+(-1)kl[y,[x,z]1 where 

XE:L k , YE:L/> zEL m , k,Z,m'E:N. TheGLAofWess­
Zumino has the form L==L2ttJL_lttJLoEBLlttJL2, where 
the even elements generate a 16-D algebra isomor­
phous to u(2, 2), corresponding to the infinitesimal auto­
morphisms of the complex structure, and the odd ele­
ments are Maiorana spinors defined via the complex 
structure on the tangent space IR4 and also on the dual 
space IR4* of special conformal transformations (or 
"accelerations"). The nontrivial feature of this is the 
satisfaction of condition (c) which leads to use of the 
representation1 
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(~ ~ -:.) 
of the general element 

(~ _:.) ofu(2,2) 

on the Fermi sector, where AE gl(2, (1;), B ==B*, 

C =C*, and AA = - 2ilm(TrA) and * denotes Hermitian 
conjugation, instead of the obvious action of u(2, 2) on 
basic column and row vectors. Since the element u(l) 
in the center of u(2, 2) generates automorphisms of the 
commutators and anti-commutators in the Segal-type 
geometric quantization its eigenstates correspond to 
generalized charge eigenstates, so the Significance of 
the GLA requirement (c) is that the charge of the 
Maiorana spinors must be three times the value 
otherwise expected, in accordance with the commutator 

(3.19) 

The other consequence of the GLA requirement is that 
the pair of Majorana spinors must define a twistor rep­
resentation under su(2, 2)0 

A number of different types of twistors have been 
developed by Penrose of which that involved in super­
gauge theory is usually regarded as the most trivial; 
it results from applying the Penrose construction to the 
tangent space at each point of spacetime separately so 
giving a field of flat space twistorso Curvature in this 
model is described by the position dependence of the 
complex structure tensor J, Leo, by the nonlinear 
realization GL(4, lR)/GL(2, (1;), or alternatively by the 
complex connection coefficients corresponding to the 
nonlinear realization G2(4)/U(2, 2), where G2(4) is the 
structure group of the bundle of second order frames18 

and consists of elements of the form (a~, ah), where 
a~ E: GL(4, IR) and a~k == a~j' One difference from the 
Penrose approach to twistors is that according to the 
preceding analysis quantum mechanics is already built 
into the theory through solving the supergauge commuta­
tion relations for the momentum operator, so giving the 
modified spinor formalism (3.9), (3.13) for a/ax" 0 

The 14-dimensional subalgebra which generates the 
Volkov-Akulov supergauge transformations consists 
of the generators of the Poincare group, together with 
the components of the Majorana spinor ifi"" 1 ~ Q "" 4, and 
defines the algebra of infinitesimal automorphisms of 
the Hermitian metric g, (X, Y) of space-time. The 
geometrical approach to supergauge theory followed 
here shows the transition from the Wess- Zumino 
supergauge algebra to the 14-dimensional subalgebra 
as due explicitly to the breaking of conformal sym­
metry, and has one nontrivial consequence; namely, it 
requires p2

0: n, where p is the basic unit of length used 
in the geometric quantization. To obtain the explicit 
appearance of the gravitional coupling constant in this 
relationship, it is necessary to consider the symmetry 
breaking through the Ricci curvature form of the line 
bundle with structure group GL(2, (1;)/SL(2, (1;) and its 
relation to the field equations of general relativity 0 

D.J.R. lloyd-Evans 1926 



                                                                                                                                    

IV. DISCUSSION 

The main result of this paper is to show via the theory 
of geometric quantization how Wess-Zumino supergauge 
theory is related to the spinor and twistor25 formulations 
of geometry, subject to the proportionality p2 ex Pi where 
it suggests two extensions of the spinor formalism: 

(1) the introduction of quantum mechanics through in­
version of the supergauge commutation relations, and 

(2) the use of Maiorana four-component spinors in­
stead of the usual two-component spinors. It also shows 
how the theory of quantization based on the line bundle 
over spacetime with structure group GL(2, <e)/SL(2, <e) 
is related to twistor theory. 

Regarding supergravity and the curved space formu­
lation of supergauge theory this theory amounts to one 
of local supergauge transformations depending only 
linearly on position, but with the definition of the 
Maiorana spinor depending arbitrarily on position 
through the local reduction GL(4, lR)/SL(2, <e). The 
infinitesimal automorphisms of the set of all possible 
such reductions GL(4, lR)/SL(2, <e) are simply the infin­
itesimal automorphisms of the GL(4, lR) structure it­
self which are the nonsingular infinitesimal coordinate 
transformations. This theory is much more restricted 
than the Kaluza-Klein type supergeometry considered 
by Arnowitt and Nath because the space-time metric 
g"," determines the definition of the Maiorana spinors 
and hence also the spinor metric components gaa of the 
supermetric gAB' Furthermore fields defined on 
Majorana spinor space must be related to those on 
spacetime through the covariant vector operator 
formalism (3.14) for SL(2, <e), or more generally by 
the relation of quantum mechanical twistor functions 
to fields on spacetime. This geometrical interpretation 
also limits the scope for unified field theories of the 
Kaluza-Klein type, but retains the possibility that gauge 
symmetries can be described as due to the invariance 
of functions of several twistors under transformations 
of the twistors26 and hence under the corresponding 
supergauge transformations. 

The present geometric approach to super gauge theory 
corresponds to a very specific attitude to quantum 
gravity; namely that much of quantum theory is the 
theory of nonlinear realizations of lR4 @GL(4, lR). Ac­
cording to this view the reduction GL(4, lR)/GL(2, <e) 
defines the complex structure underlying all second 
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quantization, while remaining unquantized itself, and 
the reduction GL(2, (I;)/SL(2, (1;) defines a section of the 
line bundle which has to be quantized, and is the part 
of the gravitational field which couples to T",v' In terms 
of the curvature tensor the conformal part which is 
determined by J together with a phase factor remains 
unquantized while the Ricci curvature has to be quan­
tized: some considerations of this scheme have been 
given elsewhere,12 but it remains to be shown that a 
consistent quantum theory can be so obtained, 
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Correlations in a system with a weak, long-ranged attractive potential are studied. Using a natural small 
parameter, the asymptotic orders of all correlations are established. Explicit leading order solutions are 
obtained for all correlations when the system is away from phase change. As it approaches transition, it is 
shown that the many-body correlations, even though still small, develop very long ranges and that they 
are extremely slowly varying functions over space. As a result all the correlations contribute equally 
significantly to the computation of the pair correlation. In an asymptotic region near transition, a 
hierarchy is derived in which each correlation is expressed in terms of its immediate predecessor, its 
immediate successor and the pair correlation. The pair potential does not appear in these equations. 
Instead the correlations are expressed in terms of a Yukawa potential whose strength and range are 
related to the density and other parameters but not to the detailed form of the potential. In the leading 
approximation, the pair correlation is proportional to this Yukawa function. 

INTRODUCTION 

The purpose of this paper is to investigate the be­
havior of correlations in a simple fluid in a region near 
change of phase. We consider a model in which the 
molecular interaction consists of a small hard core 
and a weak, long-range attractive force. The precise 
nature of the attractive force is unimportant for the 
analysis here and is never used. The only requirement 
made is that the integral over all space of the attrac­
tive potential be of order one. The smallness of the 
parameter describing the weak nature of the potential 
(as well as its long range) is used to obtain a consistent 
asymptotic ordering of all correlations. The asymptotic 
analysis of this problem away from the region of con­
densation turns out to be the same as that in the so­
called "plasma limiL,,1 This model resembles that of 
Kac, Uhlenbeck, and Hemmer, 2,3 but the actual in­
verse-range parametrization is similar to that sug­
gested by Stell and Theumann4 and by Hpye and Stell. 5 

The usual approach to problems of this kind is to 
perform a virial expansion and then resum the sig­
nificant terms, 2,6 Graph-theoretical techniques are 
useful and powerful in doing this and as Ste1l7 has shown, 
they can be used to solve the formal closure problem of 
expressing the many-body correlations in terms of the 
two- body function, 

We present here a somewhat different approach. 
Starting from the BBGKY hierarchy, we make use of 
a small parameter to order all the correlations and 
to obtain explicit asymptotic solutions for them, which 
would be uniformly valid throughout space. We show 
that in this asymptotic limit, the three- body and higher 
correlations are uniformly small. Actually, the higher 
correlations are succesively smaller, So long as the 
system is not close to condensation, the contributions 
of higher correlations to the computation of the pair 
correlation are succesively more and more insignifi­
cant. As a result one obtains, in an asymptotic limit, 
the well known hypernetted chain equation for the pair 
correlation function. 7 But as the system approaches 
phase change, 8 even though the higher correlations re­
main small, their range becomes large. Therefore, 
their contributions to certain integrals become signifi-
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cant. More preCisely, every correlation contributes 
to the leading order of the pair correlation, For this 
asymptotic region, an infinite chain of equations is de­
rived and it cannot be legitimately truncated, This 
chain is Simpler than the BBGKY hierarchy in two 
senses, One is that it contains far fewer terms. The 
other is that whereas the BBGKY hierarchy expresses 
each correlation in terms itself, its successor and 
all its predecessors, our hierarchy expresses each 
correlation in terms of its immediate predecessor, its 
immediate successor, and the pair correlation. In 
other words, whereas each equation in the BBGKY 
hierarchy is an integral equation, ours is obtained by 
asymptotically solving for each correlation in 
terms of its predecessor, its sucessor, and the pair 
correlation. The pair potential does not appear in any 
of these equations. Thus these results are independent 
of the detailed form of the potentiaL Instead, what ap­
pears is a Yukawa potential whose strength and range 
are related .to the strength, range, and the second mo­
ment of ·the pair potential. In the leading approximation, 
truncation of the hierarchy at the first level gives an 
expression of the pair correlation of this Yukawa form. 

In Sec. 1, we define correlation functions through a 
cluster expansion suitable for our purposes. We pre­
sent the equation for the general s-body correlation, In 
the next section the potential and the origin of the small 
parameter are described, Using that, all the correla­
tions are ordered and leading order solutions are ob­
tained for the three-body and higher correlations, In 
Sec, 3, these solutions are used to derive the hyper­
netted chain equation, away from the region of conden­
sation. Then in Sec. 4, the entire asymptotics is re­
done as the system is assumed to be close to phase 
change .. 

1. BASIC EQUATIONS 

The starting point for our analysis is a hierarchy of 
equations for correlation functions, derived from the 
BBGKY hierarchy through a cluster expansion" No sim­
plifying assumptions are made in this process. The 
details and proofs for the derivation are given in Ref. 1 
Here we shall only symmarize the resultso It should 
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be pointed out that the cluster expansion used here is 
different from the well-known one due to Mayer and 
Ursell. Also the functions we call s-body correlations 
are different from the Mayer-Ursell correlations ex­
cept for s = 2. Our functions are related to potentials 
of average force. l • 9 The advantages of using such a 
cluster expansion are many. Not only can one write 
down the sth equation of the hierarchy explicitly, but 
all the correlations can be consistently ordered in 
terms of a small parameter. It can be shown that for 
s> 2, all the s-body correlations are uniformly small 
throughout space. Under certain conditions, this leads 
to a legitimate truncation of the hierarchy and one can 
obtain explicit solutions for the three-body and higher 
correlations. These solutions are functionals of the pair 
correlation and do not depend upon the detailed nature 
of the potential. 1.1.10 

Consider a spatially homogeneous system of identical 
particles, each of mass m, interacting through a two­
body potential rp. We shall assume that the bulk limit 
exists and that the system is being described in that 
limit. Let n be the number density of particles. We 
shall denote by {p}~ (1,,; p,,; s - r + 1), a set of P parti­
cles chosen from the set (r, r + 1, ... ,s) of s - r + 1 
particles. I{MS will stand for the p-particle "reduced" 
distribution fuIlctionll for the set {p}:. Sometimes we 
shall find it convenient to name some or all the parti­
cles. Then we shall use the notation lal.a2 ..... aq.{PI~ to 
stand for the (q + p)-particle reduced dlstributlOn of the 
q particles, al , a2, • , • ,ao and the p particles belonging 
to the set {p};. For example, 134 will stand for the two­
body reduced distribution of the particles 3 and 4, We 
shall denote by {p/j/}~ a set of p particles from the set 
obtained by removing the jth particle from 
{r,r+1, ... ,s}. 

Then we have, for s = 2,3,'" the well-known BBGKY 
hierarchy, 

-+~v.·---~~ .- f S [
a S a 1 S arpij a ] 
at i=1 ' aXi In ii}=1 ax/ aV j {sl l 

n 
111 

(1, 1) 

Here Xi and Vi denote the position and velocity, respec­
tively of particle i, ¢/j denotes the potential between 
particles i and j and a/axj and a/av i stand for the gradi­
ents with respect to the position vector and velocity 
vector, respectively, of particle i. 

We define the s-particle correlation a{sls, for s "" 2, 
through the following equation: 1 

f s = TI/{s-llt TI/{S-3It (TIl) (_l)S [ ] 
{sl l - TIt TIl • • • {lIS 1 + a{ sl sl • 

. {s-211 {s-4I f 1 

(1. 2) 

Here TI/{ Pl l stands for the product of all distinct p­
particle distribution functions that can be formed from 
the s particles 1,2, ... ,s. This product will contain 
(P factors. If one neglects a{sls, (1. 2) can be thought 
of as a generalization of KirkwJod's superposition ap­
proximation. For s =2, 3, and 4, for example, the 
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correlations are defined by 

112 =ltf2(1 + 0!12), 

f _ft2f1sf23 (1 + a ) 
123 - Itf2f3 123 , 

f - 1123/124ft34f234 f f I f (1 + a ) 
1234 - 112fl si14/2 si24fs4 1 2 3 4 1234 • 

a 12 is what is usually known as the pair correlation 
function. As for the distribution functions, 

°01.°2 ........ {j>I~ will stand for the (q + p)-particle correla-
tion function of the set of particles denoted by the 
subscripts. 

In thermal equilibrium, all the correlations are inde­
pendent of velocities and are functions only of positions. 
Also, 

( m ) 3/2 (mv2) 
11 = 2rrkT exp - f}1 , (1. 3) 

where k is the Boltzmann's constant and T is the tem­
perature. In that case, we can substitute for the dis­
tributions the expressions (1. 2) and (1. 3) and obtain 
from the BBGKY hierarchy, the following hierarchy for 
correlations: 

For s "" 3, 

-aa log(1+a{sls)=- n
T 
f~ 

"1 1 k a"1 

x (1 + 01 S+I)~ r1 o{P.)s s+l, (1. 5) 
~ i =1 1 l' 

where the summation is over all products satisfying 
the following conditions: 

(i) The sets {Pi}f occurring in each product are 
distinct. 

(ii) If Pi = 1, the particle 1 is not a member of {Pi}!' 

(iii) Let Ui'=1 {Pi}f={P}f, Thenp=s-1 or p=s. 

(iv) If P = s - 1, the particle 1 is not a member of 
{p}f. 

This means that, for example, for s = 4, terms such 
as 0' 25 0!235 and 0'1250'235 cannot occur in the sum, the 
former because of (iii) and the latter because of (iv). 
These statements are proved in Ref. 1. 

2. THE POTENTIAL AND ITS EFFECTS ON ORDERING 

In order to obtain useful solutions to the hierarchy 
[(1. 4), (1. 5)], we look for methods of simplifying it. If 
there is a small parameter E natural to the system, it 
can be used to estimate the orders of the correlation 
functions and one can attempt an asymptotic solution 
of the hierarchy. For this purpose, let us suppose that 
the potential consists of a small hard core and a weak 
long-ranged attraction. The small parameter will be 
related to the ratio between the range of the hard core 
and that of the attractive potentiaL There is a natural 
length scale in the problem, namely, n-1/3• We shall 
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use this as a standard of reference. For the sake of 
facility of expression, sometimes we shall refer to a 
distance as being of a certain order instead of saying 
that ratio of that distance to n-1/ 3 is of that order. The 
symbols 0 and 0 will be used in their usual sense, We 
shall say that two quantities Y(E) and Z(E), are precisely 
of the same order and denote it by Y - Z if Y = O(z) and 
Z =O(yL 

The radius of the hard core will be assumed to be of 
the order of E2/3 where E is 0(1), The exponent ~ is 
chosen so that the effect of the hard core would be sig­
nificant in an asymptotic region near phase change. 
The attractive part of the potential will be assumed to 
have a range of the order of c1 and its strength for 
distances of its range to be of order E3. Outside the hard 
core, 1>(r) will be assumed to be a smooth, negative, 
increasing function of r such that 

where 0 is the radius of the hard core, The analysis that 
follows is independent of the detailed form of the poten­
tial. For the purpose of visualizing it, however, one 
could think of the attractive part as something like 
- E2A exp(- E{3r)/r, where A, {3-1. 

Under these assumptions, away from the region of 
phase change, the asymptotic analysis turns out to be 
similar to that in the so-called "plasma limit. " The 
technique employed is one of successive estimates and 
consistency arguments. It can be summarized as fol­
lows. Suppose that the asymptotic orders of Q {Jli for 
j == 1, 2, .•. , s -1 are known. In the equations for Ci{.}s, 

all the terms involving Ci{s+ll~+l are neglected and the
1 

order of Ci{s}' is estimated. then in the equation for 
Ci{s+1)r1, all lhe terms containing the (s + 2)-particle 
correlation are neglected and this estimate of Ci(s}f and 
those known for lower correlations are used to esti­
mate the order of Ci(s}i+1. This is then put back in the 
full equation for Ci {sd to check if it affects the original 
estimate. Finally, after having found the orders of all 
the correlations, as a result of this ordering procedure, 
one can obtain explicit solutions to the leading order 
for all correlations, away from the region of phase 
change. The consistency argument is completed and 
verified by observing that these solutions concur in 
order with the earlier asymptotic estimates. 

To illustrate this, let us start with (1. 4). Neglecting 
Ci 123 , suppose one seeks a solution to the resulting 
differentio-integral equation, 

a log(1 + Cid _ ~ ~ 
oXj - kT oXj 

n 
kT j ()¢ 
~ (1 + Cid Ci23dx3 

(2.1) 

by iteration. One would start by setting 

a log(1 + Cif2) __ ~ 01>12 
OX1 - kT 2Xj , (2.2) 

solve this, substitute it for Ci 13 and 0'23 inside the inte­
gral in (2.1), and solve it again and so on. If the itera­
tion converges or if it is asymptotic (i. e., yielding suc­
cessively smaller correction terms as E - 0), the solu-
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tion to (2.2) will be a good pointwise estimate of the 
solution to (2.1). Integrating (2.2) with the condition 
that Ci 12 - 0 as IXj - ~ I - 00 we have 

af2 ==: 'l112 '" - 1 + exp(- 1>12lkT). (2.3) 

For IXj - ~ I = O(E2/ 3
), 'l112 -1 and if IXj -:It:! I-lor 

larger, 'l112 - 1>ldkT = 0(1). Substituting (2,3) in (2. 1), 
we find that the integral term becomes 

O~ n j'l113 'l123 dX3' 

Let Xj - ~ ==: r and Xl - X3 ==:~. Then, 

n J 'l113'l123 dX3 - n I ~ 13 'l1( I ~ I) 'l1 (I r - ~ 1)0 (2.4) 

If Irl-E2/3, the major contribution comes from 1~I-E2/3 
and this term is of the order E2, Hence the iteration is 
asymptotic yielding the virial expansion, with succes­
sive terms of higher order in Eo Therefore, for I r I 
- E21 3, Ci 12 -1. For I r I - 1 or bigger, 'l112 - 1>12IkT. When 
I r I-liE, i. e., the range of the potential, with I ~ I-liE, 
the right-hand side of (2.4) becomes precisely of the 
order of 'l1(r). In other words, the integral term is sig­
nificant to the leading order when IXj - x2 I -liE. Dif­
ferentiating the logarithm in (2, 1), 

OCi 12 ==- ~ ~(1 ) 
ilXj kT oXj + a 12 

Since 0'12 in the first estimate is 'l112 which is 0(1) for 
I Xj -:It:! I -1 or larger, and since the significant con­
tribution to the integral when I Xl - :It:! I -liE, comes 
from I Xj - X31 -liE, we can write the above equation 
in the form 

iJa 12 f 0'l113 d - 0'l112 [20'12J 
a - n '0 Ci 23 X3 - '0 + 0" 0 Xj uXj uX1 uXj 

(204') 

Observe that this equation is valid for all distances. 
When IXj - ~ 1- E21 3, the integral term is small, but 
when IXj - ~ I -liE, it is significant, The operator on 
the left side of (2.4'), acting on the pair-correlation 
function, is linear. The term 0(oa12/aXj) will generate 
an asymptotic iteration. The rest can be integrated 
to obtain 

a 12 - n J 'l113Ci23dX3 ==:-V12 +0(a 12 ). (2.5) 

Since 'l112 == - I + exp(- 1>12 /kT) and (Pt2 outside the hard 
core is assumed to be a negative, monotonically in­
creasing, integrable function, 'l112 is square integrable. 
Therefore, so long as the quantity 

is a fixed positive number (-1), by classical Fredholm 
theory12 the iteration converges everywhere. Thus the 
order of Ci 12 as given by (2.3) remains unaltered, and 
we have 

0'12 - 'l112 everywhere. (2.7) 

Now we go to Eq. (1. 5) with s = 3 and set a 12 34 to zero. 
The leading iterant is 

alog(l+ab)_ n f~ 
-- 'Oy. (1 + Ci 14 )a 24 Ci 34 dx4• 2Xj kT (I., 
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Using (2.7) and the definition of 'it12 as given by (2.3) 
and integrating with the condition that 0'123 - 0 as the 
particle separations tend to infinity, we get the 
estimate, 

log(1+O'b)-nj'it14'it24'it34dX4' (2.9) 

Let xt - ~ =r, xt - X3 = E, and xt - x4 =17. Then the right 
side of (2.9) is of the order 

n 117 13 'it ( I 17 I ) 'it ( I r - 171 ) 'it( I E - 171 ). 

It is easily verified that for all values of r and ~, this 
quantity is G(E6). Hence 0'123 = 0(1) and we can write 
(2.9) as 

(2.10) 

Since 0'12 - 'it12 everYWhere, in the equation for 0'123 all 
terms which are integrals over products of pair corre­
lation and three-particle correlation are o(eO'm/ext) 
and we can write (1. 5) for S = 3, after setting 0'1234 to 
zero, as 

(2.11) 

As before, so long as Il:;: 1 - n f 'it12 d~ is a fixed positive 
number, the iteration converges and the estimate (2.10) 
remains unaltered. 

Now we have to put this estimate in (10 4) and verify 
that (2.7) still remains valid. This is immediate, since 
from (2.10) 0'123 = o ('it12 ) everywhere and from (2.11) the 
integral terms in (1.4) containing 0'123 are 0(a'it1/axt). 
But a'it12 /axt is the leading iterant and hence 0'123 will 
make asymptotically small contributions to the iteration. 
This completes the argument for the pair-correlation 
and partly for the three-body correlation. Next one 
proceeds to the equation for 0'1234, estimates it and 
verifies that it contributes asymptotically small terms 
to 0'123' In general one can show that for s'" 3, 

(2. 12) 

This result is demonstrated by a different argument in 
Ref. 2. It is easily seen from (2.12) that for s> 2, 
0' (s)i = 0(1) for all values of its argumenL In particular, 
if every pair of particles is separated by a distance of 
the order €2/3, 0'{slf-E2 and if every pair is separated 
by a distance l/E, viz., the range of the potential, 
0'{S)i-E3S-3. It should be pointed out that the range of 
every correlation is of the order of the potential. In 
other words, if any pair of particles is separated by a 
distance much larger than the potential [1. e., l/E 
=o(distance)], O'(s)f' where {sH contains this pair, es­
sentially vanishes as fast as the potential. This is 
obvious from the estimate (2.12). This is due to the 
fact that we have assumed that 1l-1. If Il is sufficiently 
small, however, as we shall see in Sec. 4, the range of 
each correlation is much longer than that of the 
potential. 

It should be emphasized that in all these ordering 
arguments, E is considered to be an infinitesimal in the 
strict asymptotic sense. In other words, the sum of 
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any finite number of infinitesimally small terms is still 
an infinitesimal. 

Now for the final step of obtaining leading order solu­
tions let us first illustrate this with 0'12 and 0'123' The 
equation (2.5) can be solved by taking Fourier trans­
forms and it is easily verified that 0'12 is of the same 
order as 'it12 • The leading order equation (2.11) for 
0'123 can be integrated and written as 

0'123 - n j 'it14 0'234 dX4 

= n j'it14 0'240'34 dX4 + 0(0'123)' (2.13) 

Substituting for 'it14 on the right side from (2.5) and 
rearranging terms, we have 

0'123 - n j 0'140'240'34 dle..! 

- n j 'it14[0'234 - n j 0'250'350'45 d~] dX4 = 0(0'1d. 

From a well-known uniqueness theorem for Fredholm 
equations we conclude that 

0'123=n j 0'14()124()134 dx4 + a «()I 123). (2.14) 

Similarly, one can show that 

0'1234 = n j ()I 15 «()I 25 ()I 35 ()I 45 + ()I 25 ()I 345 

+ 0'35()1245 + ()I45()1235) d~ + 0«()I1234)' 

In general for s '" 3, 

(2.15) 

where the summation is over all products such that 

(i) In anyone product all the {PJ}'s are distinct, 

(ii)PJ<s-l, 

(iii) U):,1 {pJ}={s -l}L 

(iv) all the {PJH 's are pairwise disjoint. 

A proof of this is given in Ref, 1. The symmetry of the 
expression (2.16) under permutations of subscripts can 
be verified. The term consisting of PJ = 1 for all j along 
with the fact that 0'12 - 'it12 , corroborates the estimate 
(2.12). It may be noted that the potential does not appear 
explicitly in (2. 16), Thus all the correlations are ex­
pressed as functionals of the pair correlation. 

3. THE HYPERNETTED CHAIN EQUATION 

This is obtained by retaining terms up to and includ­
ing the leading order in ()1m in Eq. (1. 4). Since ()I23-1 
only for distances of order E2/3 and 0(1) for longer 
distances, the term f (O()l13/axt) ()I230'123dX3 is o[ j(atfi13/ 
ilxt) 0'123 dx3] and hence can be neglected to this order. 
Substituting for 0'123 its leading order solution (2.14), 
(10 4) now becomes 

a 10g(1 + ()I12) 
axt 

Note that the last term on the right side is of a higher 
order than a log(1 + ()I12)/ext. Therefore, we can sub-
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stitute to this order, 

n jocf>13 ( ) 
- kT ox, 1 + a 13 a 34 dX3 

== _0_ 10g(l + au) + ~ ~ + 0 [oa u ] 
AX, kT aX, aX1 

to obtain 

+ f a 10g(l + au) d 
aX, a U a 24 X4 

+ k~ f~~4 a 14 a 24 dx4 +o [E3 ~~2J 
This, upon Simplification and integration, yields the 
hypernetted chain equation, 

10g(l + ( 12 ) = -1i¥ -n f (t¥ + 10g(l + ad - ( 13) a 23 dx3· 

(3. 1) 

The last two terms on the right side are o(a 12 ) if 11-1. 
As 11 becomes small, however, they become Significant. 
Specifically we shall show that when 11- E2 they are of 
the same order as the terms retainedo It is easily veri­
fied that the range of a 12 is of the order of E-11l-1/2 and 
its magnitude in its range is of the order E31l1/2

o Sup­
pose that 11 « 1, and let I X, - Xz I - E-11l-1 12 so that the 
particles are separated by distances much larger than 
the range of the potential. The contribution to the in­
tegral from the hard core will be O(E2a 12 ) and hence is 
insignificant to the leading order in a 12 • So we can re­
place cf>13/kT by - '!i13 '" 1- exp(- cf>13/kT) and expand the 
logarithms to obtain, 

a 12 - n J W 13 a 23 dX3 == - cf>12/kT + t n J ai3a 23 dx30 

(3.2) 

Let X, - Xz == r and X, - X3 = E. If I r I »l/E, the range 
of the potential, I r I » I E I in the integral term on the 
left side. We can expand a 23 = a (r - E) in a Taylor series 
around r. 

where the subscripts i,j denote components and the 
summation convention is used. Because of the spheri­
cal symmetry of W13, all the odd derivative terms inte­
grate to zero. So if one keeps the second derivative 
terms, the remainder is of the order IE 14(a4 / 
dlrI4)a(lrl). We anticipate that (d4/dlrI 4)a(lrl) 
-a(lrl)/lrI40 Since W has a range of l/E, and is of 
magnitude E3 in its range, 

J W 131 X, - x314 dX3 - IN. 
Therefore, the remainder term upon integration is of 
the order a (I r 1)/ I r 14E4, which is much smaller than the 
second derivative term which is of the order a ( I r 1)/ 
I rl V. Now (3.2) can be written as 

ll a 12 - i V2a 12 fix, - X312W13dx3 = i f a13a 23dx3' 

(3,4) 
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The cf>12 term does not appear because Ix, - Xz I »l/E. 
If one neglects the right side, which arises from a 123 , 
the solution is 

E2A exp(- wi r I) 
an = kT Irl (3.5) 

where 

(3.6) 

and 

The constant A is determined from the matching condi­
tion that when Irl-l, a(lrl)-- (l/kT)cf>(lrl). It is 
easily verified that both terms on the left side of (3,4) 
are of the same order. 

Also from (3.6), one has 

(3.8) 

Now we can estimate the right side of (304) to be of the 
order E2a 12 . Therefore, when 11- E2, the right side of 
(3.4) becomes significant. Finally it can be readily 
checked that if a 12 is given by (3.5), v2a 12 - a 12 / 

Ix, - Xz 12 as anticipated. 

4. REGION OF PHASE CHANGE 

In the last section we showed that a 123 , even though 
small, makes a Significant contribution to the leading 
order to a 12 if 11 - E2. This implies that the asymptotic 
analysis presented in Sec. 2 is not valid as 11 - 0 with 
E. In this limit, the range of a12 becomes infinite and so 
does the compressibility. Hence we refer to the region 
11- E2 as the "region of phase change." In this section 
we redo the asymptotics on the BBGKY hierarchy in 
this limit. 

In particular, we study the behavior of the correla­
tion functions as 11 - 0, when the particles are separated 
by distances much larger than the range of the potential. 

The calculations presented in the last section indicate 
that in the equation for the s-particle correlation, one 
must retain the (s + l)-particle correlation. The corre­
lation functions themselves are small in magnitude 
but because of their long range, integrals over them are 
significant. Therefore, if we seek a solution to the lead­
ing order for a{j}i, we can still neglect all those terms 
containing producls of a{ilj with other correlations. We 
can replace log(l + a{ili) by a{j}i. We should, however, 
retain the term containing aU+1}t+1 Singly. Thus (1. 4) 
and (1. 5) for s = 3 become in this limit, 

aa12 f oW13 
ax, - n AX, a 23 dX3 

(4.2) 
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In general, for s;' 3, 

oG'{srl _ n f~ G'( I s +1 dx 1 
o~ o~ s2 ~ 

- f~6rr s - n o~ (JI {Pjf2 ,s+1 

n f oW1• s+1 d ) + 2" o~ G'(s+llrt Xs+t + 0 (G'{s+Ur1 , (4.3) 

where the summation is over the same products as 
given by (2.16). Notice that we have replaced OCPI/OX1 

(1 + G'i) by oWij/OX1' because these two quantities are 
equal to the leading order, inside the hard core, and 
outside it, wi} - CPij and G'ii is small. We shall assume 
that IJ.-E2 and tXl-Xzt-l/E2. LetLG'123=G'123 
- n J W14 G'234 dX4' Expanding G'234 around G'123 in a Taylor 
series it is readily seen that 

LG'123 - 1J.Cl'123 = 0(G't23)' 

Hence to this order, 

(by interchanging 3 and 4) 

n
2 

a If ="2 ()~ WI3W14 G'234 d'X.! dX3 

(4.4) 

n a f =2" o~ WI3 G'123 dxg (from (4.4)J. 

Substituting this in (4.1), and integrating it we have 

Cl 12 - n f W 13 C1 23 dX3 

=W12 + ~ f W 13G'123 dx3 +O(G'12)' (4.5) 

Similarly in (4.2) we replace Cl 1234 by n J W15 G'2345 d~, 
interchange 4 and 5, and integrate to obtain 

=n f W14G'24G'34dx4 + ~ f W14C11234dx4 +O(G't23)' 

(4.6) 

Just as we did in the last section, we expand Cl 23 in 
(4.5) and G'234 in (4.6) in Taylor series and retain the 
second derivative terms. The proof that in each case 
the remainder is small is the same as presented ear­
lier. Then we have 

2 4 e 
V1G'12- E ~ Cl 12 

(4.6') 
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+ O(E2G'123). (4.7') 

Here we have set 

€2 f IJ.=E2e, X="2n 1~-XzI2W12dXz, e-l, X-1. 

(4.7) 

Define 

Gd~ - Xz) '" 411" t~l_ Xz t exp[- €2(e/X)1/2Ixt - Xz I J. 

(4.8) 

Then (4.6') and (4.7') are solved by 

Note that G has a range of the order of 1/E2. This, to­
gether with the fact that n J W12 dXz = 1 + 0(1), can be 
used to simplify the above equations as 

In general for s ;, 3, 

where the summation is over all products given by 
(2.16). 

(4.9) 

(4.10) 

(4.11) 

It can be easily verified that if G'm is of the same 
order as the first term on the right side of (4.10), then 
the integral term in (4.9) is of the same order as G'12 
and hence cannot be ignored. Similarly, the equation 
for G'1234 can be written as 

(4.12) 

By following an argument similar to the one in Sec. 2, 
we presume that 

(4. 13) 
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(4,14) 

Then in the equation for 0'1234, 0'250'350'45 - €12, whereas 
0'250'345 - €10 and hence the former can be neglected and 
we have 0'1234 - €8. This is the same order as when all 
the particles are separated by distances of order 1. 
Now we can show inductively that O'(sli-€zs, Consider 
a product IT 0' (p IS s+1 of Eq. (4.12). Suppose that this 
product has n t~i~s with indices PI' ••• ,Pn respective­
ly, 2"" Pk "" S - 2 and L:~=1 Pk = S - 1, so that it satisfies 
all the conditions given for (2.16). If we assume that 
0' (it - €Zj for j = 2, . 0 • , s - 1, the order of this product is 
€2<s-l+

n
). Since Pk "" s - 2 for each k, this quantity is larg­

est when n = 2, i. e., when the product has only two 
terms. Therefore, (4.11) is simplified to 

(4.15) 
Here {s - 2/j'}i stands for the set of s - 2 particles ob­
tained by removing the jth particle from the set 
2,3, ... , s. 

Using the fact that G has a range of the order of l/€z 
it is immediately seen that 0'(SIS-€2s. This completes 
the induction argument. It can 11so be easily verified 
that the integral over the (s + I)-particle term is of 
the order €zs. For let I xt - x s •2 I - 1/ €2, I x s •1 - xs+2 I - 1/ Eo 

Then since the (s + I)-particle correlation is of the 
order €(Zs.Z), the integral term containing it in (4.15) 
is of the order 

1 1 €2':lr ,€2, -:3"" ,€3 ,€(2s+2) =€2s. 
€ € 

As an example, suppose that the attractive potential 
is of the form - €zA exp(- €{3r)/r. From the estimate 
(2.12) we see that, when the system is away from the 
region of phase change, if every pair of particles is 
separated by a distance of order 1, 0'(S)s-€2S for s> 2. 
From this value it decays to €3s_3 as the lparticle separa­
tions increase to the order of €-I. Near phase transition, 
however, it stays to be of the same order even when 
every pair of masses is separated by a very large dis­
tance, viz., of the order c 2 , This suggests that for 
s ~ 3, O'(s)1' is a very slowly varying function of its argu­
ments. Note that this is not necessarily true for s = 2, 
because the pair correlation is qualitatively like a Debye 
potential and its order varies with the separation. This 
property of extremely slow variation of the three-body 
and higher correlations can be exploited to simplify the 
hierarchy (4. 15L We expand these higher correlations 
around configurations obtained by replacing xs+I by xt. 
Further, using the fac t that IJ. « 1, we obtain the 
following: 

(4.16) 

(4.17) 
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(4.1B) 

By truncating this hierarchy at various levels by 
neglecting 0' (s.11 rl it is possible to solve all the equa­
tions in terms of the pair correlation and obtain single 
nonlinear equations. The convergence and/or asymptot­
icity of this procedure as s - 00 is being investigated. 
Convergence may not be as relevant here as asymptot­
icity. If €2« IJ.« 1, it might be asymptotic. 

As an example, suppose one neglects 0'1234' 

get, on substituting for 0'123 in (4.16), 
We then 

0'12 = ~: GI2 + ! C I3 0'23 dX3, (4.19) 

where 

€4 ! C12 = ~ GI2 GI3 0'23 dX3• (4.20) 

CONCLUSION 

We have derived a hierarchy for correlations in a 
region near change of phase in a simple fluid, This is 
an infinite chain of equations given by (4.16)- (4. IB). 
Each correlation function is expressed in terms of its 
immediate predecessor, immediate successor, and 
the pair correlation function. We have shown that the 
magnitude of the correlation functions becomes suc­
cessively smaller as one includes more and more parti­
cles but their range is very large. As a result all cor­
relations contribute to the leading order in the computa­
tion of the pair correlation. It is also shown that the 
correlation functions vary extremely slowly over all 
space. It may be possible to utilize this fact to obtain 
approximate solutions to the hierarchy. One could con­
ceivably obtain formal solutions of it by truncating it 
at the sth level and letting s go to infinity. But in order 
to do this one perhaps should approach the region from 
large values of 8 [defined in Eq. (4. 7)]-i. e., approach 
from the gaseous state-and obtain an asymptotic ex­
panSion in terms of 8. Work along these lines is in 
progress, 
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Structure of the Azzarelli-Collas representation for the 
scattering amplitude and generalization to the Rice 
representation and the Euler-Pochhammer representation 
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The Azzarelli-Collas integral representation for the scattering amplitude is extended to the Rice 
representation. The latter representation in turn is viewed as an example of the Euler-Pochhammer 
representation. 

I. INTRODUCTION 

Recently, Azzarelli and Collas have derived a new 
integral representation for the scattering amplitude. 1 

The representation originated from their study of 
Coulomb scattering in the parabolic coordinate system 
where the Schrodinger equation is separable and the 
wavefunctions are expressible as a superposition of 
products of Whittaker functions. A general derivation 
is obtained l by recasting, in the partial wave expansion, 
the Legendre function in terms of the Bateman function. 2 

It appears that the partial wave amplitude smeared over 
by the Bateman function is a much smoother function in 
the new variable. Usual Regge poles in the angular 
momentum plane may now appear however as zeroes 
in this new formalism, 1 

We study here the structure of the Azzarelli-Collas 
integral representation and the generalization thereof, 

The Azzarelli-Collas representation may be viewed 
as a special Mellin transform. It so happens that the 
same relationship exists between the Bateman function 
and the Legendre function. 3 This last fact permits 
the kernel in the integral representation (or the ex­
pansion coefficients in the power series expansion via 
a Sommerfeld-Watson transformation) to be simply 
related to the partial wave amplitude. 

In their derivation of the integral representation, 
Azzarelli-Collas used an identity between the Legendre 
function and the Bateman function, and cited the re­
ference to Rice, 3 Rice has actually studied a generaliza­
tion of the Bateman function, which we shall refer to as 
the Rice function. The use of the Rice function in place 
of the Bateman function gives an immediate generaliza­
tion of the Azzarelli-Collas representation to a new 
representation which we shall refer to as the Rice 
representation. 

The Rice representation may be viewed further as an 
example of the Euler-Pochhammer representation. 4 

Previously, other examples of the generalized Euler­
Pochhammer representations have been found in the 
study of Feynman amplitudes, 5 Veneziano amplitudes, 6 

angular momentum recoupling coeffiCients, 7 and SU(N) 
basis functions. 8 

For the sake of readability, we give briefly in Sec. II 
a derivation of the Azzarelli-Collas representation 
from first principles. In Sec. III, we emphasize the 
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Euler-Pochhammer aspect of the representation. In 
Sec. IV, we generalize the Azzarelli-Collas represen­
tation to the Rice representation. The Euler­
Pochhammer structure is manifest. 

Although the Azzarelli-Collas representation owes 
its origin to the analysis of the Coulomb scattering 
in the parabolic coordinates, the heuristic argument 
presented in Ref. 1 regarding the asymptotic behavior 
of the Whittaker functions does not seem to provide a 
deeper insight to the raison d' etre of the integral 
representation. One possible interpretation from the 
group-theoretic pOint of view would be as follows. 
The spherical functions pertaining to the rank-one 0(3) 
group and labelled by the angular momentum l (beside 
the third component label m) belong to the family of 
the Gauss hypergeometric function [such as PI(z) = 
2Fl( -l, Z + 1; 1; (1- z)/2]. The case of the Coulomb 
scattering admits, as is well known, the group 0(4), 
which is of rank two, Therefore, it is quite conceivable 
to arrange, at least, for some of the representation 
functions to correspond to the higher-hierarchy general­
ized hypergeometric functions [such as 3F2(-I, I + 1, 
v; 1, p; z) whence the Bateman and the Rice functions] to 
accommodate the extra label. In this spirit, it would 
be interesting to view the generalized Euler-Pochham­
mer integral representation as natural for the cases of 
underlying symmetry groups of higher ranks. 

II. AZZARELLI-COLLAS INTEGRAL 
REPRESENTATION AS A MELLIN TRANSFORM 

The Azzarelli-Collas integral representation for 
the scattering amplitude can be derived from first 
principles as follows. 

Step 1: Expand the scattering amplitude A(s, z) into 
partial wave amplitudes 

A(s,Z)=L (2Z+1)a l (s) Pz(z), (1) 
1=0 

Step 2: Recognize that the Legendre function P z is 
a special case of the Gauss hypergeometric function 
2F U 

PI(Z)=2Fl(-l, Z+l; 1; ~(1-z) (2) 

and that the Bateman function F I is a special case of 
the 3F2 function, 

FI(-2v-1)=3F2(-1, 1+1, v; 1,1;1). (3) 

Copyright © 1977 American Institute of Physics 1935 



                                                                                                                                    

Step 3: Recall that there is a Euler-Pochhammer 
integral relation between A.IF B+l and AF B' 4 

A+IF B+l«a), c; (b), d; w) 

- r(d) J 1 dt te-l (1 _ t)d-C-1 F « ) (b) t) - r(c)r(d _ c) 0 A B a; ; w , 

(4) 

where (a) and (b) are shorthand notations for the two 
sets of parameters aI' "', aA and bu "', bB respec­
tively. Applying (4) to (3) and (2) for the case A=2 and 
B = 1 gives the Euler-Pochhammer representation 
for the Bateman function, namely 

(5) 

= - Si:1TII Jo'" dr r- V
-
1(1 + rtl P G ~ ~) , (6) 

where t = T/(1 + r) in going from (5) to (6). Equation (5) 
is complementary to the contour representation Eq. (Bl) 
quoted in Ref. 1. 

Step 4: Equation (6) may be viewed as the Mellin 
transform of (1 + rrlp «1 - r)/(1 + r). The inverse 
Mellin transform gives 

(1 + Tr
1 

p G ~ ~) 
=~Ja+!"'dllT" (-1TFI5-211-1)) 

21Tt .,..!", sm1TII' (7) 

where (1- r)/(1 + T)=z=cos8. This is the Eq. (3) 
quoted in Ref. 1 and attributed to Rice. 3 

Step 5: Substituting (7) into (1) gives the Azzarelli­
Collas representation 

(I+Tr l A (s, i~~) 
(8a) 

=:B b(s, 11) (- T)V, (8b) 
v,o 

-1T~(S, 11) =J'" drT-v-1 (1 + rrlA Is, 1- r). 
Sln1TII 0 '\ 1 + r 

(8c) 

Equations (8a) and (8c) may be viewed simply as the 
Mellin transforms between (1 + rtlA(s, (1- r)/(l + r)) 
and -1Tb(s, 1I)/sin1TII. This b(s, 11) is simply related to the 
partial wave amplitudes al(s) in the following sense. 1 

As the folded sum of al(s) with the Legendre functions 
PI(Z) gives A(s, z), the folded sum of al(s) with the 
Bateman function F I( - 211- 1) gives b(s, 11), 

b(s, 11) ='£ (2l + l)a l (s)F 1( - 211-1). 
1=0 

(9) 

Equations (8b) and (8a) are related by a Sommerfeld-
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Watson transformation. A convenient way to remember 
the structure of the Azzarelli-Collas representation 
(8) is that setting b(s, v);;; 1 formally in (8b) gives 
A = 1, and Eqs. (8a) and (8c) then merely confirm the 
fact that (1 + r)-l and 1T/sin1Tv are a Mellin-transform 
pair. 

III. EXTENSION TO THE EULER-POCHHAMMER 
REPRESENTATION 

In terms of the variable t = r/(l + r), Eq. (8c) reads 

r(1) 
b(s, 11) r(- 11) r(1 + 11) 

X J
0

1 
dt r V

-
1 (1 - t)" A(s, 1 - 2t). 

This is a special case of the Euler-Pochhammer 
representation 

r(d) 
g(z;c, d) ric) r(c _ d) 

x J: dt te-1(1 - t)4-C-1/(t;Z) 

evaluated at c=-v, d=1. 

(10) 

(11) 

Examples of the representation (11) and the general­
ization thereof to multiple integrals have been cited 
by the statements in the Introduction. It is expected 
that such a generalized Euler-Pochhammer integral 
representation would occur, for example, in the mul­
tiple scattering. 

IV. THE RICE REPRESENTATION 

In place of the Bateman function (3), the Rice func­
tion3 is given by 

R I (II,P, z);;;~z (-1,1 + 1, 11; I,P;z). (12) 

The Bateman function is recovered in the limit P = 1 
and z = 1, 

(13) 

The remarkable feature of Rice's analysis is that 
the integral relation (4) between ~z and 2F1 is actually 
invertible, namely 

zF1(au aZ;b 1;z) 

= ria,) J 1 du Ub2 -1 (1 _ U)4g-bZ-l 
r(b z) r(a 3 - bz) 0 

(14) 

This implies that from the relations (1), (2), and (14), 
we have 

A(s, 1- 2w) 

=~ (21 + 1) al(s) P 1(1- 2w) 
I 

r(v) J 1 d 1>-1(1 )V-1>-1 ( p.) 
r(p)r(lI-p) 0 uu -u rS,II, ,wu, (15) 

r(s, 11, p;y) 

=6 (21 + 1) al(s) R I(V, p, y) (16) 
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r(p) f 1 dt t~-l(1 _ W-~-lA (s 1 - 2yt). 
r(lI)r(lI- p) 0 ' (17) 

Equation (16) is the generalization of (9) while Eq. (17) 
is that of (10). On the other hand, unlike the Azzarelli­
Collas reprentation (8a) which is merely a Mellin 
transform, Eq. (15) is also in the form of the Euler­
Pochhammer representation. 

IT. Azzarelli and P. Collas, Phys. Rev. D 12, 3237 (1975). 
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The quantum mechanical representations of the anisotropic 
harmonic oscillator group 
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A group G associated with the n -dimensional anisotropic harmonic oscillator is constructed : G is 
essentially a group generated by the position and momentum observables. the identity operator, and the 
Hamiltonian of the system. All the quantum mechanical irreducible representations of G are evaluated, 
using Mackey's theory of induced representations. 

1. INTRODUCTION 

In an attempt to gain a greater understanding of acci­
dental degeneracy in quantum theory, a study has been 
made of the n-dimensional anisotropic harmonic oscil­
lator. 

The basic object studied is a group, G, associated 
with the n-dimensional anisotropic harmonic oscillator: 
G is essentially a group generated by the position and 
momentum observables, the identity operator, and the 
Hamiltonian of the system. 

In the present paper, all the quantum mechanical ir­
reducible representations of the group G are evaluated 
(up to unitary equivalence). This is done by using 
Mackey's theory of induced representations. The rep­
resentations of G calculated here are used in a later 
paper where the accidental degeneracy of the n-dimen­
sional anisotropic harmonic oscillator is discussed. 

In Sec. 2, the Lie algebra L of G is defined. Next, it 
is shown how a heuristic construction leads from L to 
the definition of G, and its simply connected covering 
group G. Some properties of the groups G and G are 
listed in Sec. 4. Those parts of Mackey's theory of 
induced representations needed to construct the repre­
sentations of G and G are summarized in Sec. 5. The 
theory is then applied to finding the representations of 
G, and hence those of G. 

2. DEFINITION OF THE LIE ALGEBRA L OF G 

The quantum mechanical n-dimensional anisotropic 
harmonic oscillator is a particle of mass m with Hamil­
tonian 

where w" W 2 , ••• ,wn are positive constants (the fre­
quencies), and {Qj :j = 1, 2, ... ,n} and {Pj:j = 1, 2, ... , n} 
are sets of self-adjoint operators corresponding to posi­
tion and momentum observables respectively, and satis­
fying the commutation relations 

[Qj,Pk]=inojkI (1'E'j,k'E'n). 

To avoid unimportant constants, and to construct a 
Lie algebra associated with these operators, define the 
skew-adjoint operators: 
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E=1 B=·mw j Q 
( )

1/2 

t, j 1 n j' 

A 
. ( 1 ) 1/2 . Hose 

j=t mnw. Pj' T=t-li-· 
J 

Then 

(Aj,Bk]= I5 jk E, [T,Bk] = wkA k , 

[T,Akl= -wkB k , [Bj,E]= 0, 

[A j' E J = 0, [T , E J = 0 . 

Therefore, E,BpB2"" ,Bn, ApA2"" ,An' and T 
form a basis of the Lie algebra defined by the above 
commutation relations. This Lie algebra will be de­
noted by L. 

3. HEURISTIC CONSTRUCTION OF THE GROUPS 
G ANDG 

(1) 

Every real Lie algebra is isomorphic to a subalgebra 
of some gl(m, R) [where gl(m, R) denotes the Lie algebra 
of all real In x m matrices]; therefore, there is a ma­
trix representation of the Lie algebra L by elements of 
some gl(m, R). 1 

One straightforward representation to use is the ad­
joint representation. However, since E commutes with 
E,B"B 2, ... ,Bn' ApA2"" ,An' and T, it follows that 
adE is the (2n + 2) x (2n + 2) zero matrix. A significant 
property of the Lie algebra L is that [A j' B kl = 15 jkE, 
where E is possibly not the zero operator. Hence many 
important features of the Lie algebra L would be lost 
if the adjoint representation were used. It is therefore 
necessary to look for some other matrix representation 
of L. 

Let E jk denote the (2 n + 2) x (2 n + 2) matrix with 1 at 
the intersection of the jth row and kth column, and 
zeros elsewhere. Define a mapping - of the chosen 
basis elements of L into gl(2n + 2, R) by 

E-E=2E2n+l.2n+2 , 

B j -B j = -E2n + 1 ,j + En + j ,2n +2 (1 'E' j ~ n), 

Aj-Aj=E2n+l.n+j+Ej,zn+2 (1~j"'n), 
n 

T -f=I) wj(Ej,n+j -E n+ i •j )· 
i =1 

The mapping - may be extended by linearity to the 
whole of L. It is easily verified that the mapping -
gives a matrix representation of the Lie algebra L. 

Copyright © 1977 American I nstitute of Physics 1938 



                                                                                                                                    

Thedefinition of the mapping - and the following heu­
ristic construction of G are generalizations of ideas 
used by Streater2 for the one-dimensional case. 

Now consider the set of matrices formed by taking 
products of exponentials of the representative basis 
elements. A typical element of this set is 

(a, (3, a, T) = exp(aE)exp({3,B 1)exp({3fi2)' .. exp({3nBn) 

xexp(a , A, )exp(a2A2)'" exp(anAn)exp(T'T), 

r COSW,T sinw,T 

COSW2T 0 

0 

COSWnT 

-sinw,T COSW,T 

(a, (3, a, T) = -sinw2 T 0 

where a E R, {3 = ({3" {32' ... ,(3n) ERn, a = (a" a 2, ... , an) 
ERn, and T E R. (The notation and the order of the ex­
ponentials have been chosen to fit in with those re­
quired in a later paper.) 

A straightforward calculation, using the explicit ex­
pressions for E,B"B2 , ••• ,Bn, A"A 2 , •• • ,An' T, gives 
that 

-0 a , 

sinw2T 0 0 a 2 

0 . 
· 

sinwnT 0 an 

0 {31 

COSW2T 0 0 {32 (2) 

· 
0 . 0 · . 

-sinw"T COS WnT 0 {3n 

••• , -{3JCOSWJT - aJsinwJT, ••• "', -{3JsinwJT+ ajcoSWJT,'" 1 2a - CJ.{3 

0 0 . . . 0 0 
'-

The composition law on this set of matrices is taken 
to be matrix multiplication. It may be shown that 

(a', {3', a', T')(a, (3, a, T) = (a", (311, a", Til) , 

where 

{3;= {3 jCOSW j T' - aJsinw jT' + {3j , 

aj' = (3jsinw j T' + ajCOSWjT' + aj , 

and T" satisfies 

COSWjT "= coswj ( T' + T) 

sinwjT"=sinw/T'+T) (l~j~n). 
(3) 

The ambiguity in the definition of T" arises from the 
fact that a Lie algebra determines a Lie group only 
up to local isomorphism. From (3), Til must be ex­
pressible in the form 

T" = T' + T + 2rrr j / Wj , 

for each j, where r
" 

r 2 , • •• ,r n are appropriate integers. 
Hence the r/s must satisfy 

When each pair of w/s is rationally related, it fol­
lows that condition (3) is satisfied if and only if the 
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0 ... 0 0 1 -

common value of r k / wk (1 ~ k ~n) lies in the set{ AS: sE7..} , 
where A is the smallest positive number which is inte­
gral on multiplication by any Wj' Hence Til is deter­
mined modulo 2rrll. by T, r' and condition (3). Also, in 
the matrix representation of (a, (3, a, T), values of T 
which differ by integral multiples of 2rrA give the same 
matrix. 

When each pair of w/s is rationally related, this sug­
gests regarding T and T' as elements of (-rrA, rrA], and 
defining T" E (-rrA, lTA] by T" == T' + T(mod2rrA). (a, (3, a, r) 
is then regarded as an element of the set R x Rnx Rn 
x(-rrA,rrA], rather than as a matrix. 

An alternative procedure for removing the ambiguity 
in T" is to define the set {; to be 

{(a,{3,a,T):aER, {3,aERn, TER} 

and to take T" = T' + T in the composition law. 

If any two of the w/s are not rationally related, each 
r J can take only the value zero, and Til is then uniquely 
determined as T' + T. In this case, each T ER defines a 
different matrix. This suggests defining G (and G) to be 
the set 

{(a,{3,OI,T):aER, {3,aERn, TER}. 

4. DEFINITION AND PROPERTIES OF G AND G 

If each pair of w/s is rationally related, the set G is 
defined to be 
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G"{(a,/:l,a,T):aER, /:l,aER", TE(-lTA,1TA)}, (4) 

with A the smallest positive number such that each AWj 
is integral. 

If any two of the w/s are not rationally related, the 
set G is taken to be the set G defined below. 

Whatever the values of the w/s, the set G is defined 
to be 

C"{(a,/:l,a,T):aER, p,aER", TER}. (5) 

Define the composition laws for G and G by 

(a', 1'3', a', T')(a, 1'3, a, T)" (a", /:l", a", T"), (6) 

where, for G and G, 

-aj {3Jsin2 wj T' + aj(pjcoswj T' - ajSinWjT')] , 

{37" /:ljCOSWjT' - ajsinwjT' + {3j , 

and, for G, 

Til =T' + T(mod2lTA), 

whereas, for G, 
T"" T' + T • 

It is readily verified that, with these composition 
laws, the sets G and G are groups. 

Furthermore, when the w/s are rationally related, 
G is a homomorphic image of G under the map 

v:(a, {3, a, T) (EG) - (0, {3, a, 'T) (EG) , 

where 'T E (-1TA, 1TA J, and is given by T = Tmod21TA. Hence 

(7) 

where Z ,,{to, 0, 0, 21TAS):S E Z} "'Z, with'" denoting iso­
morphism. 

G is given the usual topology of R2n +2, and, when 
the w/s are rationally related, the topology on G is 
then chosen to be that inherited from G under the above 
map v:G -G. It follows that G and G are connected Lie 
groups. 

It remains to check that the Lie algebras of G and G 
are isomorphic to the Lie algebra L. 

The left-invariant vector field X~, say, correspond­
ing to the one-dimensional Lie subgroup f.L(t) of a Lie 
group L is given by 

(X~cp)(l)= :t <I>(l~(t))\ 1=0 ' 

where lEL, <l>EC~(L}. Now every element of the Lie 
groups G and G can be specified by assigning values to 
the (2n + 2) parameters, a, {3p {32" •. ,{3", a p a 2 , ••• , an' T. 
For each such parameter f.L, let f.L(t) be the one-dimen­
sional Lie subgroup formed by those group elements for 
Which the value of every parameter except f.L is zero. 
Then, for both G and G, using (6), 
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X"~ 
a au' 

a a. a 
Xa. = ajCOSWjT- + COSWJT- + smWjT - , 

, aa a{3j aa
j 

X . a . a a 
C<J = -a SlnWjT aa -slnwjT a{3, +COSW,T aa

J 

' 

a 
X T " aT . 

Direct calculation of the commutation relations for 
these X/s then shows that the Lie algebras of G and G 
are each isomorphic to L. 

Moreover, since G is Simply connected, and G and G 
are connected Lie groups with isomorphic Lie algebras, 
it follows that G is the simply connected covering group 
of G. 

Now, from (6), an arbitrary element of G (or G) may 
be expressed as 

(0, fJ, a, T) = (a, /:l, 0, 0)(0, 0, a, 0)(0, 0, 0, T) . (8) 

It then follows, using (6), that 

G=N®M=(Y®X)@M, G=N®M=(Y®X)®M, 

where 

N= Y@X ={(a,{3, a,O):aE R, {3, aE Rn} 
is a normal subgroup of G and Gj 

Y={(u,{3,O,O):uER, {3ER"} 

(9) 

is a normal subgroup of N, and is isomorphic to R" + I ; 

x ={ (0,0, a, 0): a ERn} 

is a subgroup of G and G, and is isomorphic to R n ; 

M={(O, 0, 0, T):TE R} 

is a subgroup of G and is isomorphic to R; 

M ={ (0,0,0, Tb E (-lTA, 1TAJ} 

is a subgroup of G and is isomorphic to R/Z. 

5. MACKEY'S THEORY OF GROUP 
REPRESENTATIONS 

From here onwards, a representation will mean a 
unitary representation on a separable Hilbert space. 

A. Induced representation (Ref. 3) 

Let G be a separable locally compact group, and let 
H be a closed subgroup of G. Let p be a unitary repre­
sentation of H on a separable Hilbert space @p' Suppose 
there exists an invariant measure f.L on G I H, and let 
L 2 (GIH,@p,f.L) denote the space of functions from GIH 

to C\J p which are square-integrable with respect to the 
measure f.L. From each coset xEGIH, choose a coset 
representative A(x) E G so that A:GIH -G is a Borel 
function. Then the representation U of G induced by the 
representation p of H may be expressed in the form 

(U(g)ljJ)(x) = p(A(X)-'gA(g -IX» ljJ(g-IX), 

where g E G, x E GIH, </JE L 2 (GIH,@p, f.L) . 

(10) 

The representation U will be denoted by p(H) t G, or, 
when there is no risk of ambiguity, by p t G. The nota­
tion X(G) + H, or X + H, will be used to denote the restric­
tion of a representation X of G to a subgroup H. 
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In Mackey's theory of group representations, induced 
representations are used to find all irreducible repre­
sentations of a certain type of group from those of 
proper subgroups. The basic result which is needed in 
this paper is the following. 

B. Theorem (Ref. 4) 

Let G ==N @K be a separable locally compact semi­
direct product group. Define an action of K on the rep­
resentations of N by 

(11) 

where k E K, n' EN and X is a representation of N. Let 
N denote the set of equivalence classes of irreducible 
representations of N. Suppose there exists a Borel 
subset of N which meets each orbit of N (under the ac­
tion of K) in exactly one point. 

(a) General case 
Let X be an irreducible ordinary representation of N, 

Kx=={k E K:kX "" x} and G x ==N@Kx' (Kx is known as the 
little group of X, and G x as the isotropy group of X·) 
Then there exists a projective representation W of Kx 
satisfying (kx)(n') = W(k)-Ix(n')W(k), for each kEKx' 
n' EN; Wand the multiplier y of W are unique up to 
multiplication by trivial multipliers. For each irreduc­
ible l/y representation 1] of K x' the representation of 
G induced from the ordinary representation XW 0 7):nk 
- X(n)W(k) ®7j(k) of G x is an irreducible representation 
of G. 

Every irreducible ordinary representation of G is 
unitarily equivalent to one induced from a representa­
tion of the form xWQ;,7j:nk-x(n)W(k)®7)(k), where the 
orbit of the irreducible representation X of N is uniquely 
determined, the projective representation W of Kx is 
determined up to trivial multipliers by X, and the ir­
reducible projective representation 7] of Kx is deter­
mined up to unitary equivalence. 

(b) Case when N is Abelian 
Let X be an irreducible ordinary representation of N, 

Kx ={kE K:kX == X} and Gx =N@Kx' Then, for each 
irreducible ordinary representation 7] of K, the repre­
sentation of G induced from the ordinary representation 
XT/:nk-X(n)7](k) (n EN,kE Kx) of G x is an irreducible 
representation of G. 

Every irreducible ordinary representation of G is 
unitarily equivalent to one induced from a representa­
tion of the form X ij:nk - X(n)7](k) , where the orbit of the 
irreducible representation X of N is uniquely deter­
mined, and the irreducible representation 7) of Kx is 
determined up to unitary equivalence. 

6. THE IRREDUCIBLE REPRESENTATIONS OF 
THE GROUP N 

All the irreducible representations of G =N@M may 
be found by using Mackey's theory for the general case. 
In order to do this, all the irreducible representations 
of N must first be evaluated; since N = Y@X (where Y 
is Abelian), this also may be done by applying Mackey's 
theory. 

The group law of N is, from (6), 

1941 J. Math. Phys., Vol. 18, No. 10, October 1977 

(rf,/3', 01', O)(a, (3, 01,0) 

= (a' + a + 01' .{3, f3' + (3, 01' + 01,0) . (12) 

Since Y is isomorphic to R"+" each of its irreducible 
representations is of the form 

Xv,. (a, {3, 0, 0) = exp(iva+ iu.(3) , (13) 

where (a, (3, 0, 0) E Y, V E R, and U E R". 

The action of (0,0,01,0) EX on Xv,. is, by definition 
(11), 

[(O,O,OI,olxv .• ](a,{3,O,O) 

= Xv,u[(O, 0,01, O)-'(a, {3, 0, 0)(0, 0, a, 0)] 

= Xv,-vcx+u, 

from (12) and (13). 

The orbits of Y under the action of X are therefore 

Ov={xv.u:uER"} (votO,vER), 

O.={xo.ul (u ERn). 

Firstly, consider the representations of N arising 
from orbits of the form Ov' 

(14) 

As a representative point of the orbit Ov, choose Xv,a' 

The little group of Xv,o is just the identity (0,0,0,0), 
whose only irreducible ordinary representation is, of 
course, the one-dimensional identity representation. 
Hence the corresponding representation of N is given by 
inducing the representation Xv.a of Y [= Y@(O, 0, 0, 0) ] to 
N. 

An explicit expression can be given for Xv .a( Y) t N 
once coset representatives of N /Yin N have been 
chosen. Now (a, (3, 01,0) and (a', (3', 01',0) belong to the 
same coset of Y in N if and only if a == a'; denote the 
coset to which (a, (3, a, 0) belongs by a (E R"). Then the 
natural action of N on the coset a EN /Y is given by 

(a',{3', a', O)a= 01' + a. 

Since the coset representatives A:N /Y -N must satisfy 
A(a)O== a, a possible choice for A is A(a) = (0, 0, a, 0) 
(EN). 

It follows, from (10), that the representation of N in­
duced by X v ,0 is 

[U';,(a, (3, a, O)l}!](x) = expiv(a - x.{3)l}!(x - a), (15) 

where v (ot 0) E R, and l}!EL 2(R", C). 

Secondly, consider the representations of N arising 
from orbits of Y of the form Ou [(14)]. 

O. is an orbit consisting of the single point Xo .• ; the 
little group of X O.u is the whole of the subgroup X. As 
X;::; R", each of its irreducible representations is of the 
form 

7)1:(0,0, a, 0) -expit.a, 

where tE R". 

Since the isotropy group of Xo.u is the whole of N, the 
representation of N obtained from the representations 
XO ,u of Yand 7]1 of X is just their product, 

U'J/(a, (3, a, 0) = expi(u.{3 + t. (1), (16) 
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where u, tERn. 

Hence, up to unitary equivalence, each irreducible 
representation of N is of the form (15) or (16). 

7. THE IRREDUCIBLE REPRESENTATIONS OF 
THE GROUP G 

As the next step towards obtaining all the irreducible 
representations of G = N @ it, consider the action of 
(0,0,0, T) EM on an irreducible representation U~ of N. 
From (6), (11), and (15), 

([(0,0,0, T)U;](O, (3, a, O)ljI)(x) 

=exPiv(a+ ~ [aJ
2
-f31 coswjTsinwjT 

- {3ja jsin2w jT-Xj ({3jCOSwjT + a jsinw jT)J) 

xl/! ( ••• ,X) + (3jSinWjT - ajCOSWjT," • ). 

Since U; is an irreducible representation, so is 

(17) 

(0, 0, O,T)U;. Restricted to the subgroup{(a,O,O,O)}, 
(0,0,0, T)U; is just the phase expiva. It follows that 
(0,0, 0, T)U~ must be unitarily equivalent to U;, since 
U; is the only irreducible representation of N which has 
the required form on restriction to the subgroup 
{(a, 0, 0, OJ}. 

Hence there exists a unitary operator WeT), dependent 
on T, such that 

(0,0, 0, T)U~= W(T)-lU~W(T), 

for each (0,0,0, T) E M. 

(18) 

Each orbit of {U~:V(* 0) E R} (eN) under the action of 
£1 thus consists of a single point U~; the little group of 
U; is the whole of M, and so the isotropy group of U; is 
N@£1=G. 

In order to obtain the corresponding irreducible rep­
resentations of G explicitly, the operator WeT) must be 
found. From Mackey's theory, W is a projective rep­
resentation of £1, and is unique up to trivial multipliers. 
Since £1 ~ R, and R has no nontrivial multipliers,5 W may 
be taken to be an ordinary unitary representation of the 
one-parameter subgroup M. Hence, by Stone's theo­
rem,6 there exists a unique skew-adjoint operator J 
such that 

W( T) = expTJ . (19) 

It remains to find this operator J, which is deter­
mined by 

[(0,0, 0, T)U~] (n) = exp(-TJ)U~(n)exp(TJ). (20) 

Now each element (a, {3, a, O)EN can be expressed as 
a product of elements of one-parameter subgroups, 
using (12), by 

(a, (3, a, 0) 
n n 

= (0, 0, 0, 0) II (0, {3je j , 0, 0) II (0,0, aje), 0), (21) 
j= 1 j= 1 

where e j (E Rft) is a unit vector with 1 in the jth position 
and zeros elsewhere. 

For each one-parameter subgroup /.L (t) of N, the map 
/.L(t) _[(0, 0, 0, T)U;](/.L(t) is an ordinary unitary repre-
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sentation. Hence, by Stone's theorem, there exists a 
unique skew-adjoint operator Z ~ (T) such that 

[(0,0,0, T)LT;] (/.L(t»= exptZ ~(T). (22) 

So, for each /.L, 

exptZ iT) = exp( -TJ)exp[tZ pC0) J exp(TJ) . (23) 

Differentiating with respect to t and putting t = 0, and 
then differentiating the result with respect to T and put­
ting T = ° gives 

dZu(T) I = [Z~(O),JJ 
dT T=O 

(24) 

for each /.L E {a, {3" ... ,{3n' a" . , . , an} . 

The existence of a skew-adjoint operator J satisfying 
(24) follows from the existence of WeT) = expTJ. 

Conversely, suppose j is a skew-adjoint operator 
satisfying (24). To investigate the uniqueness of j, let 
J'=J -j. Then [Z~(O), J']=O for each /.L. The operators 
Z ,/0) give the representation of the Lie algebra of N 
corresponding to the representation U; of the Lie group 
N. Since U~is an irreducible representation, it follows, 
by Schur's lemma, that J' is a scalar multiple of the 
identity operator; since J' is a skew-adjoint operator, 
J' must equal ~l, where ~ is imaginary. 

Hence every skew-adjoint operator j satisfying (24) 
also satisfies (23), and (24) determines the skew-adjoint 
operator J up to an imaginary constant. 

NOW, from (17) and (22), 

Z s. (T)ljI(X) = ~ ([(0,0,0, T)U11(0, tej' 0, O)ljI)(x) I 
J at 1=0 

=( -ivxjcoswjT+sinwjT a:
j

) <J;(x). 

Similarly, 

Za(T)=iv. 

Hence, from (24), J must satisfy 

-ivwjxj=[-_&_,JJ, foreachj=1,2, ... ,n. 
aXj 

A solution of these is 

With this j, and any imaginary constant ~, WeT) 
= expT(j + ~I) is an ordinary representation of M satisfy­
ing 

(0,0,0, T)U;= W(T)-lU;W(T). (18) 

It follows from Mackey's theory that U;W:(a,/3, a, T) 
_ U~«()', (3, a, O)W(T) is an irreducible representation of 
N@M=G. 

Now every irreducible representation of M(~ R) is of 
the form 
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(0,0,0, T) - expilT, where l E R. 

Hence, from Mackey's theory, every irreducible rep­
resentation of G obtained from U~ is unitarily equivalent 
to one of the form 

(Ut h (a, [3,0', T)</i)(X) 

= U;(a, [3,0', O)W(T)expiLT</i(x) 

(25) 

where h = l - i~ can take any value in R. 

In the irreducible representation U~,I [given by (16)], 
the generator of the subgroup {( a, 0, 0,0): a E R} is rep­
presented by the zero operator, and it is easily seen 
that this is also true for the irreducible representations 
of G obtained from u;.,t by Mackey's method. Among 
the commutation relations of L are [Aj,Bkl=o'kE (1."j, 
k"'n). Hence, when E is represented by the zero oper­
ator, the representatives of Aj and Bk must commute, 
for all j,k= 1, ... ,n; this implies that the representa­
tives of all the momentum and position observables 
commute. This situation corresponds to the classical 
case; since it is the quantum mechanical case which is 
of interest here, the representations arising from U; ,I 

will not be considered further. 

8. THE IRREDUCIBLE REPRESENTATIONS OF 
THE GROUP G 

When the w/s are not rationally related, the group G 
is just the group G, so the quantum mechanical irredu­
cible representations of G are given by (25). When the 
w/s are rationally related, the quantum mechanical ir­
reducible representations of G may be obtained from 
those of its simply connected covering group G in the 
following way. 

From (7), 

G 
G"" Z, where Z ={ (0,0,0, 27TAS): S E Z} . 

Hence U~ ,n defines a single-valued representation of G 
if Ug·h has the same value on each element of the sub­
group Z. Now, for S E Z, 
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[Ut"(O, 0, 0, 27TAS)</i] (x) 

=exPi27TAS[hd~ W j ( -;. a~~ +vx;)] </i(x). 

As a basis for the representation space L 2(R", C) of U;3,h ,. 
take the set {</i rn:m = (m 1> m 2 , ••• ,m") E Z:}, where 

</im(x) = IT urn, (I V 11/2 X,) , ,= 1 

with Urn a Hermite function of order m j' 
j 

{
. + 1 if v is positive, 

Then, with sgnv= 
-1 if v is negative, 

[ 
sgnv" ] [U~·h(O, 0, 0, 27TAS)~rn] (x) = expi 27TAS h +-2- ~ Wj </im(x) 

G J=1 

since AWj is integral for each j. Hence Uth defines a 
single-valued representation of G only if 

r sgnv ~ ~ 
h= '\ --2- .w Wj' for some r E Z. 

A J = 1 

Therefore, every quantum mechanical irreducible 
representation of G is unitarily equivalent to one of the 
form 

[UJ'T(a, [3, 0', T)~](X) 

= expiva IT eXP(-iV[3jxj):tr exp(-O'j _a_) 
i= 1 j= 1 ax, 

xexPiTr~+tt. Wj(-!.~+vx;-sgnv\l </i(X) , 
LA J=1 vax, ')J 

(26) 

where v(tO) E Rand r E Z. 
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On the accidental degeneracy of the anisotropic harmonic 
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A group G associated with the n-dimensional anisotropic harmonic oscillator is shown to be embedded in 
a semidirect product L of the Weyl group N and the symplectic group Sp(2 n,IR). A particular induced 
representation of the group L, when restricted to G, is proved to be unitarily equivalent to 
EB,dw., L'c·-(,gn,j', where dw ., is the degeneracy of the energy level Ew ., of the n-dimensional anisotropic 
harmonic oscillator with frequencies (WI' w" ... ,wn ) = W, Ub·-(,gn,j' is an irreducible representation of G, and 
s may be regarded as indexing all distinct energy levels of the system. 

1. INTRODUCTION 

In an attempt to gain a greater understanding of acci­
dental degeneracy in quantum theory, a study has been 
made of the n-dimensional anisotropic harmonic oscilla­
tor. 

The quantum mechanical n-dimensional anisotropic 
harmonic oscillator is a particle of massm with Hamil­
tonian 

where wl> W 2 , ••• , wn are positive constants (the frequen­
cies), and {Qj: j==1,2, ... ,n}and{pj: j==1,2, ... ,n}are 
sets of self-adjoint operators corresponding to position 
and momentum observables respectively, and satisfying 
the commutation relations 

[Qj,Pk)==i1Hi jk I (1-"'j,k-"'n). 

To avoid unimportant constants, define new self-ad­
joint operators: 

A _ ( m Wi )11 2 A ( 1 )1/2 
Q1'-'" Qj' P.=: -- P. 

ft 1 rnfiwj l' 

giving 
A n A 

H =:6Hj , 

j=1 

where 

The eigenvalues of ii j are W j(m j + t), where m j E Z •. 
Hence each eigenvalue, or energy level, E of Hose is 
of the form 

n 

E=:1i6w j (m j +i) . 
j=1 

It is helpful to distinguish two cases: 
(a) Suppose there exists a finite positive number /1 such 
that each J.J. W j is integral; let A be the smallest such 
number /1. (In this case, the W / s are said to be ration­
ally related.) The possible energy levels of the n-dimen­
sional anisotropic harmonic oscillator with rationally 
related frequencies (WI' W 2 , ••• , Wn ) are therefore 
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where S (EZ.) is expressible in the form A6n 
lW, 111 . for 

J= J J 

some m =: (1I1l> m 2 , •• • , 11l n )E Z:. 
The degeneracy d w •s of the energy level E w •s is the 

number of distinct ways of choosing m == (ml> m
2

, ••• , m
n

) 

EZ: so that the relation s == A6~=1 W jm j is satisfied. 

(b) Suppose no finite positive number /1 exists such that 
each /1Wj is integral. The possible energy levels of the 
It-dimensional anisotropic harmonic oscillator with 
nonrationally related frequencies (wI> W2 , ••• , wn ) are 

n 

E w •e ==1i6 wj(mj+t), 
1=1 

where e is expressible in the form 6~=IW j(m j+~) for 
somem == (m 1 , 171 2", ., )}In) EZ:. 

The degeneracy d w•e of the energy level E w.e is the 
number of distinct ways of choosing 111 == (11Iu 111 2 , ••• ,lII n ) 

E Z: so that the relation e ==6~=l Wj (m j + 1) is satisfied. 

There have been a number of studies of the accidental 
degeneracy of the anisotropic harmonic oscillator. As 
is well known, geometric symmetry of a Hamiltonian 
leads to degeneracy of its eigenvalues, and to a repre­
sentation on each eigenspace of a group of operators 
which commute with the Hamiltonian. When such a rep­
resentation is reducible, sets of eigenfunctions belonging 
to separate irreducible representations coincide in en­
ergy; it was suggested that this extra (or accidental) de­
generacy occurs because there is more symmetry pres­
ent than just the obvious geometric symmetry. The 
group formed by the obvious geometric symmetries and 
these additional "hidden" symmetries would have a rep­
resentation on each eigenspace of the Hamiltonian; if 
each such representation were irreducible, then the ac­
cidental degeneracy would be regarded as being ex­
plained. Most studies of accidental degeneracy have 
therefore concentrated on symmetry properties. 

In 1940, Jauch and Hilll found classical constants of 
the motion for the two-dimensional anisotropic harmonic 
oscillator with rational frequency ratio, but when these 
constants were quantized in a reasonable way, they did 
not form a Lie algebra. In 1965, Dulock and McIntosh2 
extended these classical constants to the n-dimensional 
case with arbitrary frequency ratios, but because of the 
transcendental nature and multivaluedness of the con­
stants, it was not possible to form their quantum me-
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chanical analogs. They showed that their classical con­
stants generated a group isomorphic to SU(n). 

Demkov,3 in 1963, investigated the particular two-di­
mensional case with frequency ratio 2 : 1. He showed 
that the eigenfunctions of the Hamiltonian may be divided 
into two sets, of even and odd energy values respective­
ly; to each even value there corresponds an irreducible 
representation of SU(2), and each irreducible represen­
ta tion of SU (2) oc curs in this way; the same applies to 
the odd values of the energy. Hence the eigenfunctions 
are grouped into two systems of irreducible representa­
tions of SU(2). Il'kaeva,4 a student of Demkov, dealt with 
a rather more general situation. Cisneros and McIntosh5 

extended these results to the two-dimensional case with 
rational frequency ratio k2 :kl (where kl and k2 are mu­
tually prime integers). They showed that the eigenfunc­
tions may be grouped into klk2 systems of irreducible 
representations of SU(2). Recently, a somewhat differ­
ent approach has been taken by Louck, Moshinsky, and 
WoIL6 They determined the canonical transformation 
that maps the classical two-dimensional anisotropic 
harmonic oscillator with rational frequency ratio k2 : kl 
onto the isotropic one. Since the latter has a symmetry 
group of linear canonical transformations that are a rep­
resentation of SU(2), these can be combined with the 
canonical transformation giving the mapping, to obtain 
the symmetry group of the classical anisotropic harmon­
ic oscillator. Using the classical situation as a guide, 
ladder operators can be constructed in the quantum pic­
ture; these have different forms for the klk2 different 
systems of eigenfunctions. From the ladder operators, 
the generators of theSU(2) symmetry group responsible 
for the accidental degeneracy can then be determined. 
These results were later placed in a more general con­
text of groups of canonical transformations responsible 
for accidental degeneracy in two-dimensional quantum 
mechanical problems. 7 

Less attention has been devoted to the n-dimensional 
anisotropic harmonic oscillator with rational frequency 
ratios (the n-dimensional rational oscillator) for n>2. 
In 1968, Vendramin8 showed that, in general, the degen­
eracies of the energy levels are not equal to the dimen­
sions of any irreducible representations of SU(n). The 
following year, Maiella and Vilasi 9 constructed operators 
which commute with the Hamiltonian of the three-dimen­
sional rational oscillator, and which generate SU(3); 
they showed that to any energy level there corresponds 
a reducible representation of SU(3). Cisneros and McIn­
tosh,5 generalizing their analysis of the two-dimensional 
rational oscillator to the n-dimensional case, found that 
each eigenfunction belongs to one and only one of several 
systems, each of which forms a basis for the symmetric 
tensor irreducible representations of SU(n). However, 
for n >2, all eigenfunctions of a given energy level may 
not belong to the same system; hence, the representa­
tion of SU(n) corresponding to a given energy level may 
be reducible. 

The approach adopted to the problem here is rather 
different. Symmetry groups are not considered; nor 
does the classical situation enter the picture directly. 
Instead, the basic object studied is a group, G, associ-
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ated with the n-dimensional anisotropic harmonic oscil­
lator: G is essentially a group generated by the position 
and momentum observables, the identity operator, and 
the Hamiltonian of the system. (Such a group G can be 
constructed whether the frequencies are rationally re­
lated or not.) The next step is to show that G can be 
embedded in a semidirect product, L, of the Weyl group, 
N, and the symplectic group, Sp(2n,R). The anisotropic 
harmonic oscillator is then studied by examining repre­
sentations of the groups G and L. All the quantum me­
chanical irreducible representations u~,r of G were 
evaluated in Ref. 10. 

In the present paper it is proved that the degeneracies 
of the energy levels of the n-dimensional anisotropic 
harmonic oscillator occur in the following way (whether 
the frequencies are rationally related or not). A parti­
cular induced representation R V of the group L, when 
restricted to G, is unitarily equivalent to 

f'T'Id uv,-(Slmv)s 
'CD W,s G , 
s 

when v*- 0, where d w S is precisely the degeneracy of the 
energy level E W,s of the system, U ~r(sgnv)s is an irreduci­
ble representation of G, and the summation may be re­
garded as over all distinct energy levels of the system. 

A feature of the approach taken here is that, from the 
outset, the emphasis is on the use of Lie groups (and 
their representations), rather than on Lie algebras. 
One advantage of this is that Mackey's theory of induced 
group representations can be used to find all the irre­
ducible representations of G (as shown in Ref. 10), and 
to help in the analysiS of reducible representations of 
G; the corresponding results for the Lie algebra of G 
would then follow from those for the group G. 

The definition of L and of the representation R V are 
from a paper by van Hove ll (which is mainly concerned 
with a possible method of quantization). The parts of 
this needed for present purposes are outlined in Secs. 
2 and 3. In Sec. 4, the representation RV of L is de­
scribed explicitly as an induced representation. This 
enables RV+G in turn to be expressed as an induced rep­
resentation, using Mackey's subgroup theorem. If G 

were a compact group, the usual form of the Frobenius 
reciprocity theorem could then be applied to find the de­
composition of this representation. However, G is only 
locally compact. Nevertheless, a formal application of 
the theorem is still of some help since it suggests what 
the result may be. Other methods are then used to 
prove that this suggested result is, in fact, correct. 

2. DEFINITION OF VAN HOVE'S GROUP r AND SOME 
OF ITS SUBGROUPS 

Define a differential form e on the vector space of 
real (2n+1)-tuples: {(S,ql,q2, ... ,qn'Pl'P2""'Pn) 
ER2n+l} by 

n 

if ""ds -~PJdqJ""ds -p.dq, 
;=1 

where q = (ql' q2' ... ,qn)' P=(Pl,P2' ... ,Pn)' 

Let r be the family of invertible Coo transformations 
of this space, {(s,q,p)}, into itself which leave the differ-
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entia I form e invariant. It can be shown that r is a 
group, and that every element of r is a transformation 
of the type 

q'=q'(q,p), p'=p'(q,p), s'=s+1I(q,p), 

where p'. dq' - p. dq =d1l. 

(1) 

The following finitely-generated subgroups of r are of 
special importance. (In each case, the topology on a 
subgroup with 111 generators is taken to be that inherited 
from the usual topology on R m.) 

The center C: This is the subgroup given by transfor­
mations of the form 

q'=q, P'=p, s'=s+a, (2) 

where aER. As van Hove shows, the group rIc is es­
sentially the group of invertible classical canonical 
transformations. 

The subgroup N: A simple transformation of the 
space {(q,p)} is that of translation, 

q'=q+B, p'=p+a, (3a) 

where S, a ER" (retaining van Hove's choice of notation, 
both here and for the other subgroups he mentions). 
This implies 

s'=s+a.q+(T, (3b) 

where a E R. This set of transformations is a subgroup 
of r of which a typical element will be written (a, B, a,I) 
(for reasons which will soon become apparent). The 
group law is 

(a', B', a',I)«(T,a, a,I)= (a",S", Cl",I) , 

where 

a"=B'+.B, 

(4) 

It follows, from Ref. 10, Eq. (12), that this subgroup is 
isomorphic (as a topological group) to the subgroup N of 
the oscillator group G. N can therefore be identified 
with a subgroup of r. 

The symplectic group Sp(2n,R): Another simple trans­
formation of the space {(q,p)} is that of linear transfor­
mation, 

with 

= ~:: :J:
k

) 

ql=Dq+CP( , 

p'=Bq +Ap ~ 
(5 ) 

E GL(2n, R) (the group of all 2n x 2n real nonsingular ma­
trices). This leads to a transformation of {(s,q,p)} be­
longing to r if and only if'6;=l(P;dqj-P,dqj) is a per-
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fect differential. This condition is equivalent to the 
condition that S belongs to the group Sp(2n, R) of 2n x 2n 
real symplectic matrices. The resulting subgroup of r 
is isomorphic to the direct product of C and Sp(2n, R); 
in particular, Sp(2n, R) can be identified with the sub­
group of r to which it is isomorphic. 

The subgroup L: The subgroups Nand Sp(2n,R) may 
be combined by considering transformations of the space 
{(q,p)} of the form 

q'=Dq+CP+B, p'=Bq+Ap+a, (6a) 

where B, 0' E R", (~ g).-::. Sp(2n, R). (As before, only the 
subgroup Sp(2n, R) of GL(2n, R) leads to transformations 
belonging to r.) It follows that 

s'= s + ~Ap. CP+ tBq .Dq +Bq.Cp + a. (Dq +Cp) +a, 
(6b) 

where a E R. This set of transformations, L, is a sub­
group of r of which a typical element may be written 
(a, a, a, S). The group law is 

(a', (3', a', 5')(0", B, a, 5) = (0"", a" , all, S") , 

where 

a" == a' + a+ tA'a. C'a + t B '{3.D'{3 

+B'B.C'a + a'. (D'B +C'a), 

(3":D'B+C'O'+{3'. 

Cl"=B'a+A'a+a', 

S"=5'5. 

An arbitrary element of L may be expressed in the 
form 

(a,i3,a,S)=(a,i3,a,I)(O,O,O,S) . 

It is then easily verified, using (7), that 

L =N@Sp(2n,R), 

where 

N ={ (a, {3, a, I):a ER, {3, a ERn} 

is a normal subgroup of L, and 

Sp(2n,R)={(0, 0,0, S)E L}. 

(7) 

(8) 

(9) 

[The previously mentioned identifications of N (c G) and 
of Sp(2n, R) with the corresponding isomorphic sub­
groups of L have been used here.] 

The subgroup G: The isomorphism of the subgroup 
N (c G) with a subgroup of L raises the possibility that 
G (or G) is also isomorphic to a subgroup of L. The 
heuristic construction of Gto suggests consideration of 
the subset of L given by {(a, 13, a,S(T»}, where S(T) is a 
symplectic matrix with 

a Jk = 6 Jk COSW J T, b Jk = 6 Jk sinw j T , 

Cjk=-OjksinwjT, djk=OjkCOSWjT. 

(10) 

If the w/s are rationally related, then the subgroup 
M (of G) ={(O, 0, 0, T): TE (-11 A, 1IAn is isomorphic to the 
subgroup (of L) {(O, 0,0, S(T»: TE (-1TA, 1IAn under the 
map T - S(T). It then follows that {(a, B, O',S(T»: 0" 
E R, 13, a E R", T E (-1TA, 11 An is a subgroup of L and is 
isomorphic to G. 
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If any two of the w / s are not rationally related, then 
{(a,/3,CI!,S(T»: aeR, i3,CI!eR n

, TeR} is a subgroup of 
L isomorphic to the group G (=G, in this case). 

3. THE REPRESENTATIONS RAND RV OF r 
Van Hove introduces two types of representation of r: 

(i) To simplify the notation, let z denote a point of the 
space {(s,q,p)} and let dz denote a volume element 
dsdql' . 'dqndPl' • 'dPn' The volume element dz is invari­
ant under transformations belonging to r. Let {)2n+l be 
the separable Hilbert space of complex-valued, mea­
surable, square-integrable functions on {(s,q,P)}, with 
scalar product defined by 

(<I>,Z)= J <I>(z)Z(z)dz. 

where the integral is taken over the whole space 
{(s,q,p)}, and - denotes complex conjugation, Define 

(R (y)<I»(z) '" <I> (y-lZ) , 

where yer, <I> e {)2n+I' and y-lz denotes the image of z 
under y-l, Since d(yz) =dz, R is a faithful, unitary rep­
resentation of r on the space .t>2n+l' 

(ii) Let w denote a point of the space {(q,p)}, and let 
dw denote a volume element dql" 'dqndPI" 'dPn' For 
convenience, write the transformation ye r in the form 

(11) 

The volume element dl.e is invariant under transforma­
tions belonging to r, Let {)2n be the separable Hilbert 
space of complex-valued, measurable, square-inte­
grable functions on {(q ,p)}, with scalar product defined 
by 

(¢, t)= J ¢(u·)t(w)du' , 

where the integral is taken over the whole space {(q,p)}. 
Define 

(12) 

whereyer, veR, and¢(C::~2n' Usingd(yw)=dU', and 

(13) 

it may be verified that R V is a faithful, unitary repre­
sentation of r, when v *0, and a faithful, unitary repre­
sentation of r /e when v = 0. 

The reason for introducing the representations RV is 
that the representation R is unitarily equivalent to a di­
rect integral of them.11 

4. EXPRESSION OF R V t L AS AN INDUCED 
REPRESENTATION 

The r~presentation R V of the group r can be expressed as 

(RV(y)¢ )(w) = m (w, y)¢ (y-Iw) , 

where 

m (w, y) = exp[iV1T y(y-Iw)] . (14) 

This is similar in form to the explicit expression for an 
induced representation p(H) t G of a separable, locally 
compact group G, 
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where geG, xeG/H, <peL2(G/H,t>p,/J.) [ReL10, Eq. 
(10)]. However, induced representations are usually de­
fined only for separable locally compact groups; the 
group r is not locally compact, but its subgroup L is 
locally compact, and separable. From now on, atten­
tion is therefore restricted to the subgroup L of r. It 
will be shown how RV" L can be expressed as an induced 
representation. 

The space {(q, p)} is transitive under the action of the 
subgroup N (of L), and hence it is transitive under the 
action of L. 

Let u'o be an arbitrary point of the space {(q, p)}, and 
let H be the closed subgroup of L which leaves Wo fixed. 
Then the space {(q,p)} is L-isomorphic to the space 
L/H. Since R" is a representation of L, m satisfies the 
so-called cocycle condition 

m (w, YI (2) = 111 (w, YI)m (yiIU ', (2), 

for each we{(q,p)}, yp Y2eL. 

In particular, for u'=u'o and hl!h2EH, 

111 (11'0' h l h2 ) = m (u'a, h1)111 (u'o, h2 ) , 

(15) 

Hence, since m(wa, h) is a complex number of unit mod­
ulus, h - m (u'o, h) is a unitary representation of H, 

The representation of L induced from this representa­
tion of His 

(U(y)¢ )(u') =m (w o' A (11' tly A (y-Iw »¢ (y-Iu') , 

where y EL, ¢ E L 2(L/H,C), U' E{(q,p)}, and A: L/H-L 
satisfies A (w)wo =w, 

Now, from (15), 

111 (w 0' A (w )-ly A (y-Iu'» 

= m(wo, A(U:)-I);11 (w, y)m (y-~, A(y -lw». 
Since 111 (11', y) is a scalar, R V t L is the induced repre­
sentation U if Wo and A can be chosen such that 

m(u'o, A(wtl)m(y-Iw, A(y-Iu'»= 1 , 

for all yeL, U'E{(q,p)}. 

If v = 0, this is the case for any choice of 11'0 and A. If 
v*O, this holds [from (13) and (14)J if 

7f ACw)(wO)=const, for all u' E{(q,p)}. 

A simple choice of u'a and A which satisfies the above 
condition and A(w)u'o=w is 

wo=(O,O), A(w)w=w+w, 7f ACw )lJJ=p.q, 

where w:: (q,p) and w= (q,f5). 

This proves the following result. 

Theorem: The representation Rvt L is a representa­
tion of L induced from the representation 

D: (a, 0, 0, S) - expiva (16) 

of the subgroup H = ex Sp(2n, R), with choice of coset 
representatives 
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5. EXPRESSION OF R V 
-I- G AS AN INDUCED 

REPRESENTA TlON 

W + G = (W + L ) + G = (D (H) + L) + G . 

Hence Rvt G is the restriction of an induced representa­
tion of L. Now G and H are closed subgroups of the sep­
arable locally compact group L; also, L can be ex­
pressed as a single double coset G(O, O,O,I)H, and, tri­
vially, {CO, 0, O,I)} is a Borel set in L which intersects 
this double coset exactly once. Mackey's subgroup the­
orem12 may therefore be applied, giving 

(D(H) t L)+ G = (D(H) t (G n H»+ G. (17) 

So 

W+ G =D(G n H) + G, 

where GnH={(a,0,0,5(T»}, andD: (a,0,0,5(T)-expiva 
is an irreducible representation of G r' H. 

6. FORMAL DECOMPOSITION OF R V -I- G 

When v =0, the generator of the subgroup {(a, 0, 0,1): 
O'ER} of G is represented by the zero operator in the 
representation R" [from (12)J. This corresponds to 
the classical case, and so will be ignored. 

Suppose P is an arbitrary irreducible representation 
of G. A formal application of the Frobenius reciprocity 
theorem 12 yields 

(w+ G, p)c = (D(G n H) t G,p)c= (p + (G nH),D(G nH»C!1H' 

(18) 
This suggests that P occurs in R V

" G the same number 
of times that D(G r' H) occurs in p t (G I' H). 

As explained in Ref. 10, Sec. 7, for a classical irre­
ducible representation Pel of G, Pel(a, B, O!, 5 (T» is inde­
pendent of the parameter a, and so Pel t (G n H) cannot 
contain the representation D: (0',0,0, 5(T»- expiva of 
G n H, when v * 0. This suggests that no classical irre­
ducible representation Pel can occur in R V

" G. 

(a) Suppose the w / s are rationally related 

Then, from Ref. 10, Eq. (26), every quantum mechan­
ical irreducible representation of G is unitarily equiva­
lent to one of the form 

[U~,r(a, B, 0!,5(T»</iJ(x) 

n n ( a \ 
=expiuaII exp(-iuBjx) II exp -O!jax.j 

j=l j=l J 

[
r n (1 0

2 
)] XexpiT ~+~LWj -~ax;+ux~-sgnu </i(x) , 

J=1 (19) 

where u(*O) ER, r EZ, if! EL 2 (Rn,C). 

It now remains to find how often the representation 
D (G r: H) occurs in u,:;r t (G r: H). 

As a basis for the representation space L 2 (R n
, C) of 

u';]r, take the set {</i m: m = (m u m 2 , ••• ,mn) EZ~}, where 

</im(x)=Iru m (iui 1
/

2
X j ), 

j=l j 

with urn. a Hermite function of order mj' 
J 

Then, from (19), 
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(20) 

[U~,r(a, 0,0, 5 (T»</imJ (x) 

= expiuO' eXPiT[ ~ + (sgn u/b W j 111 j] <Pm(x) . 
A J=1 

Therefore, 

U'/jr .. (G n H) =ffi Xu, r+l.(sgnu)!:j=l w jm j , 

m 

where Xu,r is the irreducible representation of G nli 
given by 

-- - (ir T) ) Xu,r: (0',0,0, 5(T»- expiuO' exp T (it ER, r EZ . 

Hence the representation D: (0',0, 0,5(T»- expiva of 
G r, H occurs in u~,r .. (G nli) if and only if 

II =1', 

and 
n 

Y+A(sgn1l)~wj1J1j=0 for some m EZ~. 
J=1 

(21) 

Suppose that, for fixed rEZ, there arefw,r distinct 
ways of choosing III so that (21) is satisfied. Then 
D(G nH) occurs fw,r times in u~,rt (G r'H) provided u 
= 1'. Hence (18) suggests that u~,r occurs in R"" G if and 
only if 11 =1), and that, in this case, it occursfw,r times. 
Therefore, 

R V
" G "'EP f w, rU~,r (formally), (22a) 

r 

where the summation is over all distinct values of Y 

which are expressible in the form 
n 

r=-A(sgnv)~wjmj (111jEZ.), (23a) 
j=l 

and, for fixed r, fw r is the number of distinct ways of 
choosing m = (JIl u 111:, ... , m) EZ: so that (23a) is satis­
fied. 

(b) Suppose the w /s aYe not rationally related 

A similar argument, using the representations U'd h 

[Ref. 10, Eq. (25)J instead of the representations u~,r 
[Ref. 10, Eq. (26)J shows that 

RV" G "'EP fw hU'(/ (formally), (22b) 
h ' 

where the summation is over all distinct values of h 
which are expressible in the form 

n 

h = -(SgU1)~ w.(m. +~) (m j EZ.), 
j=l J J 

(23b) 

and, for fixed ft, f w h is the number of distinct ways of 
choosing m = (mu m~, ... , mn)EZ: so that (23b)issatisfied. 

7. PROOF OF THE DECOMPOSITION OF R V -I- G 

Altenzative expression for R V
" G 

Since every element of G can be written in the form 

n 

(a, B, O!, 5(T))= (a, 0, 0, I)II (0, B je J' O,I) 
1=1 

n 

xII (0, 0, O!jej,I)(O, 0, 0,5(T)) 
}::1 

(24) 

[from (4) and (8)J, the representation R V + G may be ex­
pressed as a product of representations of one-dimen-
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sional Lie subgroups of G. These representations may 
be calculated explicitly by using (12), together with (6), 
(10), and (11), and Stone's theorem,13 

[W(a, 0, O,J)cp)(q,p) =expivacp(q,p) , 

[W(O,13 j ej , O,I)cp](q,p)=cp(q -13 je j ,p) 

:= exp (-13 i -l-)cp (q, p) , 
qj 

[RV(O, 0, ajej,J)cp](q,p) =exp(ivafoj)CP(q,p - aje,) 

=expaj~vqj - a;Jcp(q,P) ' 

[W(O, 0,0, S(T»<P ](q, p) 

= exp[ -iV1T S (r )-I(q ,p )]cp(S( T)-I(q, p» 

= exp[ iv t;( q! ; P;sinwkT COSWkT + PkqkSin2WkT) ] 

x cp( •• ',qjcoswjT+pjsinwjT, "', -qisinwjT 

+ P jCOSW jT, ••. ) 

(t [iV ( 2 2) a a J) ( ) =expT wk -2 qk-Pk +Pkc;- -qkC;-p cp q,p . 
~I uqk u k 

Therefore, 

[W(a, 13, a, S(T»<P](q ,p) 

= expiva IT exp (-/3 j a; ) 
i=1 f 

(a) Suppose the W / s are rationally related 

Alternative expression for tflfw P"d r 
r ' 

For fixed r, thefw.r copies of U"d T arise from thefw,r 
distinct ways of choosing m = (m1, m 2 , ••• , m.) E Z: so that 
(23a) is satisfied. The summation in t13rfw,rU'dT is over 
all distinct values of r which are expressible in the 
form -A(sgnv )~=IW j m j (m j E ZJ. Therefore, 

ffi f U",T = ffi Uv,-I.(Sgnv)lJ!_lwjm. 
\I7 w, r G '\I' G 1- J ~ 
r mE.Z~ 

(26) 

Now, from (19), 

n • ( a ) = eXPiva~J exp(-iv/3 jX /[I exp _a j aX
j 

xexpiT [ -(sgnv)t w/m j + i) 
j=1 

The summation over m of such representations can be 
simplified by taking U~,-A(Bf!Dv)r; J=lw j

m
j to act on the space 

L 2 (Rn,C)lP rn [where IPm is defined by (20)]. For each m EZ~, 
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exp[ -iT (sgnvr,t Wj(mi+~)J IPm(Y) 
j=l 

Now the set {lPm: mE Z:} forms a basis of the space 
L2(R',C) of functions from {y ERn} to Cj so the set 
{lPm(l)(X)lPm(2) (y): m (1)0 m(2) EZ:} is a basis of the space 
L 2 (R2n,C) of functions from {(x,y) ER2n} to C, Hence, 
from linearity, it follows that, with t EL2(R2n,C) , 

([ EB f W,TUa- T](a, 13, a, S(T) )?;)(x, y) 
T 

(27) 

The unitary equivalence of R V 
-+- G and ~ f W, p~,T 

If the representations R V + G and EBJw, p~'T are unitar­
ily equivalent, there exists a unitary operator V such 
that 

For each J.l E{a, /3 l,13 2" ,. ,13n, al' a 2 , • •• , am T}, let 
J.l (t) be the one-dimensional Lie subgroup of G formed 
by those elements for which the value of every parame­
ter except J.l is zero. Let V'"' Y~ be the representatives 
of the generators of J.l (t) in the representations R V + G 
and tflTf w,rU'/J T, respectively. Then 

(28) 
(where the parameters in the product occur from left to 
right in the order a,13 u 132 , •• • ,13 n, au a 2 , ••• , an' T). 

Hence, if V exists, it satisfies 

IT exp(J.lY~)= ITV-lexp(J.lY,)V= IT expJ.l(V-ly,"V) , 

'" '" '" 
by Stone's theorem. So Y~=V-lY,"Vfor each J.l. Con­
versely, if V is a unitary operator such that Y~ = V-ly"V 
for each J.l, then ffirfw,rU'/JT= V-l(R" + G)V. Therefore, 
to demonstrate the unitary equivalence of R" + G and 
EBrfw,P"d T, it is sufficient to show that there exists a 
unitary operator V satisfying 

y~ = V-ly," V, (29) 

for each J.l E {a, 13 u 13 2 , ••• ,/3n, au a2, ... , an' T}. 

Explicitly, V must satisfy, from (25) and (27)-(29), 

when J.l =a, 

it! = V-l(iv)V; (30) 

when /1 =/3j' 

a 
ivx = V-l - V' 

j aq j , 
(31) 
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when /1 = O! j' 

_a_=V-1(_iVq ·+_
a

a )v; 
ax j J P j 

when/1=T, 

n [ . ( 1 a2 
). ( 1 a2 

)] " w. !... _- - + 1IX2 _ ~ __ - + vy2 
L... J 2 II ax2 J 2 v ay2. ) 
jd J J 

(32) 

(33) 

From the form of these relations, it should be possi­
ble to express V, if it exists, as a product of operators 
VI V2 " • Vn, where Vi transforms operators dependent on 
one or both of Xj and y j into operators dependent on one 
or both of q j and p j' and the action of Vj on operators 
which are independent of x j and Y j is simply to take 
them into the operators obtained by replacing x k' y k by 
qk,Pk respectively ("=1, . .. ,j-1,j+1, ... ,n). More­
over, if tiC L 2(R2n, C) is a function defined on the space 
{(xu' .. ,xn• Yu ... ,3'n) E R2n}, then t is measurable and 
square- integrable when considered as a function of x j 
and Y j only, and hence, in this way, !; can be regarded 
as an element of L2 (R2

, C). It follows that Vi can be 
considered as an operator on a space L2(R2 ,C). Fur­
thermore, if Vj is unitary when regarded as acting on 
L2(J{2,C), then Vi is unitary as an operator on 
L2(R2n,C). 

This reduces the problem to showing the existence of 
a unitary operator V, defined on L2(R2,C), which satis­
fies [since, trivially, (30) is satisfied by any V] 

_ a­
iux = V-I aq V, 

- = V-I -illq + - V , a - ( a)-
ax ap 

(34) 

(35) 

(36) 

The existence of the operator V will be shown by ex­
plicit construction, in two stages. 

First, let!; EL 2 (R2 ,C) be a function from the space 
{(x, y ) E R2} to C; define a Fourier transform F 1 of I; into 
the space L2(R2,C) of functions from the space 
{(q,p) E R2} to C by 

( I' )1/2 (~ 
(F11;)(q,P) = 2~ J_~ exp(ivxq)t(x,p)dx. (37) 

By Plancherel's theorem,13 F1 is a unitary operator. 

Let ¢ E L2(R2, C) bea function from the space{(q,p )ER2} to 
C; then F;l maps ¢ into the space L2(R2, C) of functions 
from the space {(x, y) E R2} to C, and is given by 

(
V )1/ 21~ 

(F;l¢ )(x, y) = 211 _ ~ exp(-ivxq )¢(q, y)dq . 

Then 
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-1 a. a 
Fl aqF1=zvx, F;1(ivq )F1 =-8x' 

(38) 
1 a a 

F; -F1 =- F;1(ivp)F1 = ivy . 
ap 8}1 ' 

So, for the operators occurring in (34) and (35), 

-1 a . 
Fl aq Fl =ZVX, 

and 

F;l ( -ivq + a~ )F 1 = a: + a: . 
Hence the introduction of the operator F 1 reduces the 

problem of finding a unitary operator V satisfying (34) 
and (35) to that of finding a unitary operator U satisfying 

illx= U-1(ivx)U, 

~ = U-1(~ +~)u. 
ax ax ay 

Define an operator U on L2(R2,C) by 

(ut)(x, y) = t(uux +U 12 Y, U21 X +U22 Y) , 

[;-1 is given by 

- (U U U U) (U-ll;)(x,y)=1; ~2X_ :;y,_ ~lX+ ~ly . 

It follows that 

- -1 . • - _ iv U (zvx)U - il (U22 X -U12 Y), 

- (a a)- 8 a a a 
u-

1 
ax + ay U =uu ax + u2l ay +U 12 ax + U22 ay . 

(39) 

(40) 

(41a) 

(41b) 

Hence, when Uu = 1, U 12 = 0, U 21 = -il, and !!22 = il, U sat­
isfies conditions (39) and (40). To make U unitary, il 

may be taken as 1. 

Therefore, when V=F 1U, with 

(ut)(x,y)= I;(x, -x+y), (42) 

conditions (34) and (35) are satisfied. It may be veri­
fied that, with this choice of V, the remaining condition 
(36) is also satisfied. 

A unitary operator V satisfying (30)-(33) can now be 
constructed. Let t E L 2(R2n, C) be a function from the 
space {(x,y)ER2n} to C, and define the operator V map­
ping I; into the space L2(R2n, C) of functions from the 
space {(q ,p) E R2n} to C by 

(43) 

From the properties of V, it follows that V is a uni­
tary operator on L2(R2n,C) satisfying conditions (30)-(33). 
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Hence Y~ = V- 1 y 11 V, for each 
IJ. E {a, 131, 132, ... ,13n, au a 2, ... , an' T}; this implies that 

IT exp(J..LY~) = V-I [ IT exp(J..LYIl )] V. 
11 11 

Therefore, 

V-1(RV+G)V= EB fw.p~·r, 
r 

where V is the unitary operator defined by (43). 

(b) Suppose the :.u /s are not rationally related 

(44a) 

An alternative expression for EBhfw.hU(;h may be ob­
tained by a method similar to that above, using the rep­
resentations U~·h [Ref. 10, Eq. (25)) instead of the rep­
resentations U(;' [Ref. 10, Eq. (26)). It follows that, 
when the W / s are not rationally related, 
([ EBh f W hU~·hl(a, B, a, S(T»t)(X, y) may be expressed in the 
form of the right-hand side of (27), where now TE R. 
The same argument as above then gives that 

V-1 (W+ G)V=EBfW.hU~·h, 
h 

where V is the unitary operator defined by (43). 

8. THE SIGNIFICANCE OF THE DECOMPOSITION 
OF RV.j, G 

(a) Suppose the W / s are rationally related 

RV+ G~tf:fw.rUG·r, 
r 

(44b) 

where the summation is over all distinct values of r 
which are expressible in the form -A(Sgnv)~;=IWj111j (111j 
E Z), and, for fixed r, fw.r is the number of distinct 
ways of choosing In = (t/1 u t/12'" ., mn ) EZ~ so that r 
= -A(sgm' )~~=1 W j 111 j is satisfied. 

For fixed r occurring in the summation, let s = -r/ 
sgnv. Then s EZ+, andfw.r is the number of distinct 
ways of choosing m = (m l' m 2 , ••• ,11In) EZ~ so that s 
=~;=IWjmj is satisfied. Hencefw.r is precisely the de­
generacy d w•s of the energy level E w•s of the n-dimen­
sional anisotropic harmonic oscillator with rationally 
related frequencies (wu W 2 , ••• ,wn ); moreover, all en­
ergy levels of the system occur in this way. 

Therefore, 

R V + G ~ EB d []';..-<sgnvls 
s W,s G , 

(45a) 

where dw,s is the degeneracy of the energy level E w•s of 
the n-dimensional anisotropic harmonic oscillator with 
rationally related frequencies (WI' W2 , ••• ,wn), and the 
summation may be regarded as over all distinct energy 
levels E w •s of the system. 

(b) Suppose the W / s are not rationally related 

RV+ G ""EP fw,~ifc·h, 
h 

where the summation is over all distinct values of h 

which are expressible in the form -(sgnv)~~=lW/111j 
+i) (111j EZ), and, for fixed h, fW.h is the number of 
distinct ways of chOOSing 111 = (111u 1112, .•• ,11In) E z: so 
that h = - (sgnv )LJ;=l W /111 j + i) is satisfied. 

For fixed h occurring in the summation, let e = -hi 
sgnv. Then! w.h is the number of distinct ways of choos-

1951 J. Math. Phys., Vol. 18, No. 10, October 1977 

ing 111 = (111u 111 2 , ••• , 11In) EZ: SO that e =LJ~=l W j(111 J + i) is 
satisfied. Hencefw,h is precisely the degeneracy dw•e 
of the energy level Ew,e of the n -dimensional anisotropic 
harmonic oscillator with nonrationally related frequen­
cies (wu W 2 , • •• , wn ); moreover, all energy levels of the 
system occur in this way. 

Therefore, 

RV+ G ~EB d Uv.-<sgnvle 
e wfe G , (45b) 

where d w•e is the degeneracy of the energy level E w•e of 
the n-dimensional anisotropic harmonic oscillator with 
nonrationally related frequencies (WI' W 2 , ••• ,wn ), and 
the summation may be regarded as over all distinct en­
ergy levels E w,e of the system. 

In conclusion, the degeneracies of the energy levels of 
the anisotropic harmonic oscillator can thus be viewed 
as multiplicities of irreducible representations of G in 
the decomposition of the representation R V of L re­
stricted to G. 

The group G is intrinsically related to the anisotropic 
harmonic oscillator, since it is essentially a group gen­
erated by the position and momentum observables, the 
identity operator, and the Hamiltonian of the system. 
On the other hand, the group L has no direct relation to 
the anisotropic harmonic oscillator: L is simply a 
semidirect product of the Weyl group, N, and the sym­
plectic group, Sp(2n, R). As such, it would be considered 
a part of quantum mechanics, rather than classical me­
chanics. Nevertheless, it should be pointed out that the 
group LIC (where Cis the center of L) can also be re­
garded as the group of invertible inhomogeneous linear 
canonical transformations in classical mechanics. The 
representation RV of the group L will be analyzed in 
more detail in a later paper. 
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A noninvariance group for the n-dimensional isotropic 
harmonic oscillator 

M. E. Major 
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A semidirect product of the Weyl group N. with the special unitary group SU(n). is proved to be a 
possible noninvariance group for the n -dimensional isotropic harmonic oscillator. In order to obtain this 
result, a method is developed for finding the representation W of SUe n) which intertwines the 
representations U,'!., and (A + iB) UN of N [where A + iB EO SUe n )]; it is also shown that W = ttl:;' ~ 0 Wa , 

where Wa is an irreducible representation of SUe n), of dimension equal to the degeneracy of the (a + 1 )th 
energy level of the n -dimensional isotropic harmonic oscillator. 

1. INTRODUCTION 

In the literature, the term "symmetry group" or "in­
variance group" is sometimes used with little explan­
ation. However, most authors, in talking about such a 
group, mean a degeneracy group, defined as follows. 
Let D be a subgroup of the group of all unitary operators 
commuting with the Hamiltonian of a quantum mechani­
cal system; then the eigenfunctions of each degenerate 
energy level form the basis for a representation of D.l 
D is a degeneracy group for the system if: 

(i) to each energy level of the system, there corre­
sponds an irreducible representation of D; 

(ii) no irreducible representation of D corresponds to 
more than one energy level of the system, but some ir­
reducible representations of D may not correspond to 
any energy level. 

In general, once such a group has been found for a 
system, the accidental degeneracy is regarded as being 
explained. In particular, SU(n) is a degeneracy group 
for the n-dimensional isotropic harmonic oscillator. 2 

For some systems in which the accidental degeneracy 
can be explained by means of a degeneracy group, larg­
er "approximate" symmetry groups have been studied. 
Those irreducible representations of a degeneracy group 
of a system which occur as representations on the eigen­
spaces of the Hamiltonian are collected into one irreduc­
ible representation of a larger group. Such a larger 
group is known as a noninvariance group. Precisely, a 
noninvariance group for a system is defined to be a Lie 
group GN! with the following properties: 

(i) GN! contains a degeneracy group D of the system as 
a subgroup; 

(ii) the Lie algebra of Gell includes certain "noninvari­
ant·, generators which do not commute with the Hamil­
tonian; 

(iii) GN! has an irreducible representation whose re­
striction to the group D is unitarily equivalent to ttl mPm' 
where Pm is an irreducible representation of D of dimen­
sion equal to the degeneracy of the mth energy level of 
the system, and the summation may be regarded as over 
all energy levels of the system. 

The concept of such a group was apparently first sug­
gested by Barut/ in 1964; in 1965, Mukunda, O'Raifear-
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taigh, and Sudarshan4 reported that SU(n, 1) is a nonin­
variance group for the n-dimensional isotropic harmonic 
osc illator. 

The main result proved in this paper is that a semi­
direct product of the Weyl group, N, with the special 
unitary group, SU(n), is a possible noninvariance group 
for the n -dimensional isotropic harmonic oscillator. 

First, all the quantum mechanical irreducible repre­
sentations of N@ SU(n) are found explicitly, USing Mack­
ey's theory of induced representations. In order to do 
thiS, a method is developed for finding the projective 
representation TV which intertwines the representations 
U~ and (A +iB) U~ of N [where A +iB E SU(n)]o Some of 
the simplest of the quantum mechanical irreducible rep­
resentations of N@ SU(n), when restricted to SU(n), be­
come just the representation TV of SU(n)o It is proved 
that TV ='D;.oo TVa' where TVa is an irreducible representa­
tion of SU(n), of dimension equal to the degeneracy of 
the ((1 + l)th energy level of the II-dimensional isotropic 
harmonic oscillator: These results show that N@ SU(n) 
is a possible noninvariance group for the n-dimensional 
iso tropic harmonic osc illator. 

2. THE LITTLE GROUP OF THE REPRESENTATION U'N 

A typical element of the semidirect product N@ SU(n) 
of the Weyl group N and the special unitary group SU(n) 
is denoted by (a,{3,a,U), where a E::R, (3e::::Rn, Q'E R n

, 

and U I SU(n); the group law is taken to be 

(a' , rJ ' , O!' , U')(a, (3, o!, U) = (a" , (3" , O! /I , U") , (1) 

where 

a" =0" +0' +~A'i3. B'i3 - tA' O!. B'a 

-B'{3 oB'O' +0". (A'{i -B'a), 

j3" =A'f3 - B' 0' +(3' , 

0''' =B'f3 +A'O' +Q", 

U" =U'U, 

with U'=A' +iB"~ SU(n), and U, SU(n). [This definition 
is just the restriction to the subgroup N@ SU(n) of the 
group law of N@Sp(2n,R) (=L), introduced in Ref. 5; 
SU(n) has been identified with a subgroup of Sp (2n, R) 
under the isomorphism 
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A +iB [CSU(n)J- (A B) [ESp(2n,R)].] 
-B A 

Every quantum mechanical irreducible representation 
of N is unitarily equivalent to one of the form [Ref. 6, 
Eq. (15)] 

[U;(a,i3,QI,J)<f;](x)=expil'(a-x.I3)I/i(x-Ql), (2) 

where v(tO) E R, IjJ E' L 2(R" , C) . 

The action of A +iB f- SU(n) on U; is, by definition 
[Ref. 6, Eq. (11)], 

[«A +iB) U~ )(a, [3, QI, I) <f; 1 (x) 

=[U;«O, 0, 0, (A +iB)-l) 

x (c;,,8, QI, 1)(0,0, O,A +iB» if! J (x) 

= expida + ~(AT QI • BT QI -A Tj3 . B Tf3) - BTj3 . BT QI 

-x. (ATP +BT QI»i/J(x +BTf3 _AT QI), (3) 

from (1) and (2), with T denoting transpose. 

(A +iB) U~ is an irreducible representation of N. Re­
stricted to the subgroup {(a, 0, 0, I)}, it is just the phase 
expiva. Hence (A +iB) U,~ must be unitarily equivalent 
to U;, since U; is the only irreducible representation of 
N which has the required form on restriction to the sub­
group {(a, 0, O,I)}. 

Therefore, there exists a unitary operator W(A +iB), 
dependent onA +iB, such that 

(A +iB) U; =W(A +iB)-l U; W(A +iB) , 

for each A +iB EO: SU(n). 

(4) 

In order to obtain all the irreducible representations of 
N@ SU(n) explicitly, the operator W must be found (Ref. 
6, Sec. 5). 

3. A METHOD OF FINDING THE OPERATOR W 

A. General approach 

Since SU(n) is a separable, compact, connected and 
simply connected group, it has no nontrivial multipliers7; 

hence W can always be chosen to be an ordinary repre­
sentation Woof SU(n). The following method of finding 
Wo depends on the use of one-parameter subgroups of N 
and SU(n). 

Let H be an r -dimensional connected Lie group. It may 
be proved that every element of H can be expressed as a 
finite product of the form 

h =h 1(T u )hk21)" ·hr(Trl)hl(Tlz)h2(T22) 

x·· ·hr(Trz )·· ·h 1(TL<;)h 2(T z,)·· 'hr(Trs) ' 

where h 1(T),h 2(T), .. 0 ,hr(T) are independent one-param­
eter subgroups of H. 8 For convenience of notation, this 
will be written as 

(where the order of the terms is important). 

Since SU(n) is a connected Lie group, every element 
of SU(n) can be expressed as a finite product of the above 
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form, with r = dimension of SU(n) =n-1. 

Since W 0 is an ordinary representation of SU(n) , 

woehl = nn Wo(h/(Tij». 
j i 

(5) 

Hence, in order to find W 0' it is enough to determine 
the restriction of Wo to a set of (n - 1) independent one­
parameter subgroups of SU(n). 

For each i, the maphl(T) - WO(hl(T» is an ordinary 
unitary representation of the one-parameter subgroup 
h j (T) of SU(n). Hence, by Stone's theorem,9 there exists 
a unique skew-adjoint operator J j such that 

WO(hl(T)) =expTJ j • (6) 

It is thus sufficient to find the J;'s corresponding to a 
set of (n - 1) independent one-parameter subgroups of 
SU(n). 

For each one-parameter subgroup h (T) of SU(n), the 
unique skew-adjoint operator determined by W o(h (T» 
=expTJ satiSfies, from (4), 

(h(T)U;)(n') 

= exp( -TJ) U~(n') exp(TJ), for each Il' EN. (7) 

Some of the properties of the operator J will now be ex­
amined: This will indicate how the operator J can be 
calculated. 

Now each element (a,,8,QI,I)EN can be expressed as 
a product of elements of one-parameter subgroups, us­
ing (1), by 

(cr, (3, QI,I) 

where ej (E R") is a unit vector with 1 in the jth position 
and zeros elsewhere. For each parameter f.J E {cr, ill> 
132,0,. ,13", QlI> Ql2"'" Qln}, let f.J(t) be the one-dimension­
al Lie subgroup of N formed by those group elements 
for which the value of every parameter except f.J is zero. 
For each such one-parameter subgroup f.J(t), the map 
f..i.(t) - (h(T) U~)<J.l(t» is an ordinary unitary representa­
tion. Hence, by Stone's theorem, there exists a unique 
skew-adjoint operator Z ~(T) such that 

(h (T) U;) (f..i. (t» =exptZ )liT) • (9) 

So, for each f.J, 

exptZ )l(T) =exp(-TJ) exp(/Z )1(0» exp(TJ) . (10) 

Differentiating with respect to t and putting t = 0, and 
then differentiating the result with respect to T and put­
ting T = 0 gives 

dZ;;T) iTOO =[Z)1(O),J] (11) 

for each fl.. 

The existence of a skew-adjoint operator J satisfying 
(11) follows from the existence of Wo(T) =expTJ. 

Conversely, suppose j is a skew-adjoint operator sat­
isfying (11). To investigate the uniqueness of J, leLI' 
=J -J. Then [Z )1(0) ,J'] = 0 for each f..i.. The operators 

M,E, Major 1953 



                                                                                                                                    

z ~(O) give the representation of the Lie algebra of N 
corresponding to the representation UN of the Lie group 
N. Since UN is an irreducible representation, it follows, 
by Schur's lemma, that JI is a scalar multiple of the 
identity operator; since JI is a skew-adjoint operator, 
JI must equal iJ, where ~ is imaginary. 

Hence every skew-adjoint operator J satisfying (11) 
also satisfies (10), and (ll) determines the skew-ad­
joint operator J up to an arbitrary constant 

Therefore, for each i, the ordinary representation 
W: hi (T) - eXPT(Ji +~J) of the one-parameter subgroup 
hilT) of SU(n) satisfies the restriction of (4) tohi(T) 
[where J; is a skew-adjoint operator satisfying the con­
dition analogous to (11»). However, because of the arbi­
trary constants ~;, the map 

TV: IIIIhi(T;)- IIIIexPTij(Ji +~iI) 
j i i 

may not be an ordinary representation of SU(n). To en­
sure that W is an ordinary representation of SU(n}, the 
constants ~i cannot be allowed to be arbitrary, but must 
be appropriately chosen. If W is an ordinary represen­
tation of SU(n), it must give an ordinary representation 
w of the Lie algebra of SU(n)j this leads to constraints 
on the values of the constants ~i. 

B. Detailed calculation 
In order to find a set of independent one-parameter 

subgroups which generate SU(n) , a basis for the Lie 
algebra of SU(n) is first obtained. Now the Lie algebra 
of SU(n) is the algebra of all nXn complex skew-adjoint 
matrices of trace zero, denoted by su(n).l0 

A basis for su(n) is the set of (n2 = 1) elements, 

R}~ =i(Ejk +Ek) (1 ~j <k ~ n), 

RJ~=Ejk-Ekj (1~j<k~n), 

Hk=i(Ekk-~In) (2~k~n) 

(12) 

[where Elm is the nXn matrix with 1 in the (l,m) posi­
tion and zeros elsewhere, and In is the n x n identity ma­
trix). 

If Jz(T) =A(T) +iB(T) =(ajk(T) +ibjk(T» is a one-param­
eter subgroup of SU(n), then, from (3) and (9), the rep­
resentatives of the generators of N in the representa­
tion h (T) U,~ of ,V are 

Z,,(T)=iv, 

From (11), J must satisfy 
when Jl =a, 

o =[iv,J) , 

which is satisfied by any J; 
when Jl = {3j> 

-iv 2:. aJk(O)xk + ~ .. bik(O) _o-=(-ivxjlJ]; 
k~l H ax. 
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(13) 

(14) 

when Jl = ()Ij , 

-iv t bjk(O)Xk - ~ aJk(O) _0_= [-~ ,J] (15) 
k~l f;t ax. oX j 

(where' denotes differentiation with respect to T). 

(i) The operator J jor the subgroup generated by R~r;,. 

Suppose, with the above notation, that R\l~ is the gen­
erator of the one-parameter subgroup h(T) =A(T) +iB(T) 

Z(ajk(T) +ibjk(T». Then 

R~l~ =A'(O) +iB'(O) ==(aJk(O) +ibjk(O». 

In this case, the only nonzero elements of A' (0) and 
B'(O) are 

bfm(O) = 1 =b~I(O). 

Hence the conditions (14) and (15) become 

for j*l or m, 

O=[-ivxnJ) and 0=[_-°- JJ. ox
j

' , 

for j z 1 (* rn), 

_o-=[-ivxpJ) and -ivx ==[ __ [l_ JJ. 
[lXm maxI' , 

for j =m (tel), 

_0_=[ -ivx Jj and -ivx
I 
= [ __ [l_,,,]. 

ax! m' oX m 

These relations are all satisfied by the skew-adjoint 
operator 

1 a2 

J == W(R(l) = -.- +ivxzxm +~il~l, (16a) 
J~ tV aXzoxm 

where ~\l~ is an arbitrary imaginary constant. 

(ii) The operator J for the subgroup generated by R~:;;' 

Similarly, the operator J for the subgroup generated 
by Ri:;!, must satisfy 

for j*l or m, 

O=[-ivxj,J) and o=[ __ a_JJ. ox
j

' , 

for j =l (* rn), 

-ivxm =[ -ivxuJ] and __ 0_= [ __ 0- J]. 
oXm axl " 

for j =m (*0, 

ivxz ==[ -ivxm,J] and _0_= [ __ 0- J]. 
oXI oXm ' 

These relations are all satisfied by the skew-adjoint 
operator 

J=W(R(2)==X _o __ x _0-+~(2)I 
• 1m I oXm m oXI 1m' 

(lob) 

where ~\ ~ is an arbitrary imaginary constanL 

(iii) The operator J for the subf[roup generated by H m 

The operator J for the subgroup generated by H In must 
satisfy 
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for j*m, 

_~_a-=[ -ivx. J] and iv x. =[ __ a- Jl. 
n aXi l' n 1 aXi ' J' 

for j =m, 

(l_~)_a =[-ivx J] and -iV(l-~)x =[ __ a JJ. 
n ax", m' n m aXm ' 

These relations are all satisfied by the skew-adjoint 
operator 

J=w(H )=- ----+vx2 i ( 1 a
2 

) 
m 2 vax! m 

i b; ( 1 a
2 

) -- ----+vx2 +t I 2n _ v ax2 k ~ m , 
k-· k 

(16c) 

where ~m is an arbitrary imaginary constant. 

(iv) Calculation of the values of the constants ~;l~, ~i2~, 

and ~m 

It may be shown that the commutation relations of 
su(n) , in terms of the basis RW, RW, H. [see (12)], are 

[R(l) R(l)]=_(" R(2)+" R~2) +" R(2)+". R(2» 
jk' 1m Ukm JI Ukl 1m Uim kl Ul l km , 

[R(l) R(2)] - " R(l) " R(l) " R(l) " R(l) Jk' 1m --Ukm il +Ukl im-Uim kl +Uj/ km' 

[R (2) R(2)] - " R(2) " R(2) " R(2) " R(2) ik' 1m --Ukm il+Ukl im+Uim kl-uj/ km' 

[R~~, H,] = (Oil - Okl)R~~, 

[R)~, H,] = (Okl - oil)Rj~, 

[H" H m] =0, 

where, for convenience of notation, define 

R(l) =R(l) R(2) = _R(2) for J' >k " 
ik ki' ik ki' 

n 

HI =-'6Hi; 
i~2 

R}~=2Hj' RJ~=O, forj=1,2, ... ,n. 

(17) 

Since w is to be an ordinary representation of su(n), 
w(Rj~), w(Rj~), and w(Hk ) must satisfy the commuta­
tion relations of su(n). Explicit calculation shows that 
this implies 

0km ~J21 +Okl~}2~ +Oim ~W +OJ,~i2~ =0, 

Okm ~}? - 0kl ~jl~ +Oi m ~if - OJ I ~i~ = 0, 

0km ~}~ - Ok,~j2~ - oim~i1 +OJ/~i2~ =0, 

(-Oil +Okl)~j~=O, 

(-Ok' +OJ/) ~J~ = 0, 

where, for convenience of notation, define 

tel) = tel) t(2) = _ t(2) for J' >k " 
'>ik '>ki' '>ik '>ki , 

n 

~l =-'6~i; 
i~2 

tel) = 2 t t(2) = 0 f . 1 2 '>ij '>i' '>ii , or J = , , ••. , n . 

(18a) 

(18b) 

(18c) 

(18d) 

(18e) 

Conditions (18d) and (18e) give that ~}~ = 0 = ~}~ for j <k 
(and hence for j >k as well). Condition (18b) gives that, 
whenj=l, k=m (j<k), ~}Y-~i~=O, so ~i=~k; but'6j=l~i 
=0, sO~j==Oforallj=1,2, ... ,n. 
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Hence the condition that w is an ordinary representa­
tion of su(n) is sufficient to determine the (s uniquely: 
They must all be zero. Therefore, the ordinary repre­
sentation W of SU(n) satisfying (4) is uniquely deter­
mined. W(A +iB) can be written down explicitly, once 
A +iB has been expressed as a product of elements of 
the one-parameter subgroups of SU(n) generated by RJ~ , 
R (2) d 

ik' an H k • 

Note: An alternative expression for W(A +iB) can be 
obtained as follows. Since SU(n) is a connected, simply 
connected, exponential Lie group,11 the ordinary repre­
sentation of su(n) determined by w [(16)] with all the ~'s 
zero exponentiates to an ordinary representation of 
SU(n); 12 moreover, this representation is precisely the 
representation W determined by (4). 

Therefore, if A +iB E SU(n) is parametrized by T}~ , 
TJ~,TkER(l~j<k,,;n), so that 

A+iB=exp [ ~ (il)R(I)+T(2)R\2»+~THJ LJ Jk Jk Jk Jk LJ k k , 
l~j<k:5.n k:::::2 

then 

W(A +iB) 

==exp { L [iTj~ (_~_a-2_+vXjXk) 
l"'j<kSn V axjaxk 

(2) (a a )~ ~ i [ 1 a
2 

+T x· ---x -- + -T ----
Jk J ax k ax. 2 k V ax2 

k J k=_ k 

+VX2-~ ~ (-~ ~+VX2)J} (19) 
k n ~ vax! m 

is the unique ordinary representation of SU(n) satisfying 
(4). 

4. THE IRREDUCIBLE REPRESENTATIONS OF N®SU(n) 

It now foHows from Mackey's theory for semidirect 
product groups (summarized in Ref. 6) that every quan­
tum mechanical irreducible (ordinary) representation of 
N@SU(n) is unitarily equivalent to one of the form 

U~ W01J: (a,{3, O',A +iB) 

-expiv(a -x .{3) exp (- t O'j _a_) 
j =1 aXj 

x W(A +iB) 21lJ(A +iB), (20) 

where (a,{3, O',A +iB) E N@SU(n), W is the representa­
tion of SU(n) defined by (19), 17 is an irreducible repre­
sentation of SU(n), and the operators in the first part of 
the inner Kronecker product are defined on a dense sub­
space of L 2(R n, C). 

5. THE DECOMPOSITION OF THE REPRESENTATION 
W OF SU(n} 

Some of the simplest of the quantum mechanical ir­
reducible representations of N@SU(n) [(20)] are those 
for which I) is the one-dimensional identity representa­
tion of SU(n): I)(A +iB) = 1 for aHA +iBESU(n). The re­
striction of U; W 017 to SU(n) is then just the representa­
tion W of SU(n). 

In order to decompose W into irreducible representa­
tions, the closed subspaces of L 2(Rn ,C) which are in-
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variant and irreducible Wlder W will be fOWld. Suppose 
w is the representation of su(n) corresponding to the 
representation W of SU(n). Then a closed subspace Q is 
invariant Wlder W if and only if the dense subspace of Q 

on which w is defined is invariant Wlder w. 13 Hence it is 
sufficient to find the subspaces of L 2( Rn , C) which are 
invariant and irreducible Wlder the representation w. 

AB a basis for the representation space L 2( R n ,C) of 
W, take the set{l/im: m=(mum2, ••• ,mn)EZ~}, where 

<Pm(x) = IT u mj (\ Vll/2Xj) ' 
j~1 

with um. a Hermite function of order mj" 
J 

From the properties of Hermite fWlctions,14 it follows 
that the function cf>m(x) =um( I V\I/2 X) satisfies 

1 ( 1 d
2 

) "'2 --:;; dx2 +VX2 cf>m(x) = (sgnv)(m +t) cf>m(X) , (21a) 

1 [f.m)I/2 (m +1 )1/2 l 
xcf>m(x) = I v1 1 / 2 \2 cf>m-l(X) + -2- cf>m+l(X)J' 

(21b) 

d [(m )1/2 (m+1 )1/2 ] dx cf>m(X) = I vi 1/2 2' cf>m-l(X) - -2 - cf>m+l(X), 

Therefore, from (19) and (21), 

w(R;~)<Pm(X) 

=i(sgnv)[ vmj(mk +l)cf>mj-l(Xj ) cf>mk+1(Xk ) 

(21c) 

+v(mj +l)mk cf>mj+l(Xj ) cf>mk-1(Xk )] II cf>m/(x/) , (22a) 
I ~j,k. 

w (R;~) <Pm(X) 

= (sgnv)[ - vmj (m k + l)cf>mj -l(xj) cf>mk+1(xk) 

+ ..J(m j +l)mk cf>m.+l(Xj ) cf>mk-1(Xk )] II cf>m,(X1 ) , (22b) 
J I ~jr k 

W(Hk)<Pm(X)=i(sgnv)(m k - ~'ttml)<Pm(X). (22c) 

Hence the representatives of each of the basis ele­
ments of su(n) transform any L 2(R n , C) basis vector 
cf>;;'1 (Xl)' •. cf>mn(xn) with 'EP~l mj =a into a linear combin­
atiun of L 2(R n , C) basis vectors, each of which has the 
sum of the subscripts of the component functions also 
equal to a. 

Therefore, the subspace Q a of L 2(R n , C) spanned by 
the set 

contains a dense subspace on which the representation 
w of su(n) is defined, and which is invariant Wlder w. It 
follows that, for each a E Z+, Qa is invariant Wlder the 
representation W of SU(n). Hence 

W= EEl Wa , (23) 
a::: 0 

where Wa is the restriction of W to the subspace Qa • 

The representations Wa must now be decomposed into 
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irreducible representations, This will be done with the 
aid of two preliminary lemmas. 

Lemma A: Anyone-dimensional subspace of Q a which 
is invariant under the subalgebra generated by w (H k ) 

(k =2, 3, ... ,n) consists of scalar multiples of some 
If!m(x) =cf>ml(X l )" • cf>mn(Xn) , where 'E7~lmj =a. 

Proof: From (22c), each <Pm spans a one-dimensional 
subspace which is invariant Wlder the subalgebra gen­
erated by w(Hk } (k =2,.,. ,n), 

Suppose ta E Q. also spans a one-dimensional subspace 
of Q a which is invariant under the sub algebra generated 
byw(Hk ) (k=2, ••• ,n). Then, for eachk=2, ... ,n, 

W(Hk ) ta =hksa , for some hk EC. (24) 

Now since ta EQa, !;a can be expressed in the form 

(25) 

where the summation is over allm such that'E7~lmj =a. 
Hence, uSing (22c), 

=i(sgnv)'Ecm(mk -a/n)<Pm • 

Also, from (24) and (25), 

W(Hk ) ta =hk'Ec m <Pm' 

Since the <Pm are linearly independent, it follows that 

i(sgnv)cm(mk -a/n) =hkc m, 

for all m = (mu •.. ,mn ) E Z~ such that 'E 7~1 m j =a. So 
either C m = 0, or m k =a/n -ihk, Hence all nonzero terms 
in the sum 'Ecm<Pm must have the same value of m k, for 
each k =2, ... ,n; moreover, since 'E'j~lmj =a for each 
term in the sum 'E c m <Pm' it follows that each term must 
have the same value of m 1 as well. Hence ta =cm<Pm for 
some <Pm satisfying'E'j~lmj =a, 

Lemma B: Each <Pm is contained in an irreducible in­
variant subspace under the representation W. 

Proof: Choose m = (m H ••• ,mn) C Z~ arbitrarily. 
Then <PmEQa, where a ='E'j~lmj' Suppose na splits into 
s(a) irreducible invariant subspaces under W, 

s(a) 

Q a = EEl QaT' 
r=1 

where QaT is an irreducible invariant subspace Wlder W. 
Then 

So 

s(a) 

<Pm = 'E taT' where SaTE QaT' 
r=l 

s(a) s(a) 

w(Hk ) If!m = 'E w(Hk ) !;aT = 'E t~T' 
r:::1 7=1 

(26) 

where t~T =w(Hk ) taTEQaT' since QaT is invariant Wlder 
W, and therefore underw(Hk ). Also, from (22c) and 
(26), 

s(a) 

W(Hk )<Pm =i(sgnv)(mk -a/n)"E !;aT' 
r=l 
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Since tar and t~r E nar, and the nar (r = 1, ... ,s(a» are 
disjoint subspaces, it follows that 

t~r =w(Hk ) tar =i(sgnv)(m k -a/n) tar' 

Hence tar spans a one-dimensional subspace of na, 
which is invariant under the sub algebra generated by 
w(Hk ) (k =2, .•• ,n). So, by Lemma A, tar =cm<Pm' for 
somecmEC and</im satisfying 6J=1 (m)j =a. Since the 
</i's are linearly independent functions, it follows, from 
(26), that the chosen <P", is itself of the form tar (for 
some r), and so if!",Enar • 

Proposition: For each a c Z+, n. is an irreducible 
invariant subspace under the representation W. 

Proof: Choose a r=c- Z+ arbitrarily. From Lemma B, 
if!( • • 0 ..... 0) (x) belongs to an irreducible invariant sub­
space, a say, of na' Now, from (22b) , 

w(RW) if!(a .0 ..... 0) (x) 

=-(sgnv) Vaif!a-l(X 1 ) if!1(X2) </io(x 3 ) •• 'if!o(xn) ' 

unless a = 0. If a = 0, then if!(a .0 ....• 0) =<Po spans the one­
dimensional subspace, no, invariant under W. If a*O, 
then if!(a-1.1 ..... 0)Ea, since a is invariant under W and 
therefore under W(R~2J). Using (22b) again, 

w (R~2J) if!(a-l.1.o, ... ,0) (x) 

= (sgnv)[ -..J2(a -1) <Pa-2(x 1 )if!2(X2) 

+,fGif!a(X 1 ) if!0(x2)] <Po(x 3) •• ·if!o(xn)· 

Since if! (a .0 ..... 0)Ea, it follows that, unless a = 1, 
if! (a-2,2.0 ..... o)Ea as welL Then, by induction, the in-
variant subspace a containing if!(a ,0, .... 0) also contains 
if!(a-i ,j,O •••.• 0)' for j = 1, 2, ... ,a. 

Now choose arbitrarily m = (m 1> ••• , m n) E Z: satisfy­
ing6J=lm j =a. Since<P(a.o ..... o)Ea, it follows, from 
above, that <P(a- m 2' m2'0 •• •.• 0) Ea. A similar argument to 
that given before, using R~2~ instead of RW, gives that 
if!(.-m2- rn 3,m2'm3,o .... ,OlEa. Similarly, using Ri2~ (k 
=4, ... ,n) it follows that <P(a_",n. m lEa. So, 

£..Jj=2 mJ , m2' m3" ••• n 

since 6 J=l m j =a, <P(m1' "'2' .... rna) Ea. Hence a contains 
all the basis functions If", for which 6J=lm j =a, and so 
a =na' Therefore, na is an irreducible invariant sub­
space under W. (This completes the proof of the prop­
osition.) 

It fOllows, from (23), that the decomposition of the 
representation W of SU(n) is 

W= EB W., 
a::::: 0 

where each Wa is an irreducible representation (namely 
the restriction of W to the subspace n.). 

6. N®SU(n) AS A NONINVARIANCE GROUP 

The dimension of n. is the number of distinct ways of 
chOOSing m = (m l' ••• ,mn)E Z: such that 6J=tmj =a. 
This is precisely the degeneracy of the (a + l)th energy 
level of the n-dimensional isotropic harmonic oscillator. 
The results of Secs. 4 and 5 then lead to the following. 
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Theorem: For each v(tO) E R, the ordinary represen­
tation u~ W of N@SU(n), given by 

U~ W : (O', f3, QI ,A +iB) 

-exp iv(a - x . f3) exp (- f' Ql j -L. ) W(A +iB) (27) 
~ aX] 

[where W is the representation of SU(n) defined by (19) 
and the operators are defined on a dense subspace of 
L 2(R n ,C)], is irreducible as a representation of 
N@SU(n). 

The restriction of U~ W to SU(n), which is a degener­
acy group for the n-dimensional isotropiC harmonic os­
cilia tor , is 

(u~ W) +SU(n) =W = EB Wa , (28) 
a=O 

where Wa is an irreducible representation of SU(n), of 
dimension equal to the degeneracy of the (a + l)th energy 
level of the n-dimensional isotropic harmonic oscillator. 

Therefore, N@SU(n) is a noninvariance group for the 
n-dimensional isotropic harmonic oscillator. 

Note: Each irreducible representation of SU(n) may 
be described by means of a Young tableau o (There is a 
review article on this subject by Itzykson and Nauen­
berg.l1) By examining the highest weight of the repre­
sentation W., it is readily seen that 

when v>O, W.=J 1 .. ·1 1=(a,O, ... ,O), (29a) 

a boxes 

when v, 0 , IV, ~ I : I : : : I J ( " -1 vow, ~ (n, ... , a, 0) . 

~ 

a columns 
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On the accidental degeneracy of the n-dimensional 
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In an earlier paper, a group, G, associated with the n-dimensional anisotropic harmonic oscillator was 
shown to be embedded in a semidirect product, L, of the Weyl group N and the symplectic group Sp(2 n,R). 
A particular representation R' of L, when restricted to G, was proved to be unitarily equivalent to 
ffi,dw., Uc·-(,gn,), , where dw ., is the degeneracy of the energy level Ew., of the n-dimensional anisotropic 
harmonic oscillator with frequencies (w\,w2 , ... ,wn ) = w, Uc·-(,gn,), is an irreducible representation of G and s 
may be regarded as indexing all distinct energy levels of the system. In the present paper, the 
representation R' of L is shown to be unitarily equivalent to the representation U~ W@ Wof L, where 
U.~. is an irreducible representation of N, W is the projective representation of Sp(2 n, R) which 

intertwines the representations U,~ and S U~ of N [where S E Sp(2 n,R»). and W is the complex conjugate 
of W. This alternative form for the representation R' of L enables it to be decomposed, into two 
irreducible representations. 

1. INTRODUCTION 

In Ref. 1, a group G associated with the n-dimensional 
anisotropic harmonic oscillator was constructed: G is 
essentially a group generated by the position and mo­
mentum observables, the identity operator, and the 
Hamiltonian of the system, 

G was shown to be embedded in a group, L, which is 
a semidirect product of the Weyl group, N, and the 
symplectic group, Sp(2n, R).2 A particular representa­
tion R V of L, when restricted to G, was proved to be 
unitarily equivalent to tt!sdw , sU~' -(sgnv)s, where d w, s is 
precisely the degeneracy of the energy level E w• s of the 
n-dimensional anisotropic harmonic oscillator with fre­
quencies (wI' w

2
, •• • , wn), U~' -(sgnv)s is an irreducible 

representation of G and the summation may be regarded 
as over all distinct energy levels Ew,s of the system. 2 

In the present paper, the representation R V of L is 
studied in greater detail. R V is shown to be unitarily 
equivalent to the representation U~ W~ tv of L, where 
U: is an irreducible representation of N, W is the pro­
jective representation of Sp(2n, R) which intertwines the 
representations U~ and 5U~ of N [where 5 E Sp(2n, R)], 
and tv is the complex conjugate of W. This alternative 
form for the representation R V enables it to be decom­
posed, into two irreducible representations. 

In Secs. 2-4, the quantum mechanical irreducible re­
presentations of L are obtained, using Mackey's theory 
of induced representations (summarized in Ref. 1). In 
Sec. 5, various informal arguments which suggest the 
unitary equivalence of R V and U~ w@tv are given. The 
result is proved in Sec. 6, The decomposition of the 
projective representation W of Sp(2n, R) is found in Sec. 
7, and, from this, the decomposition of the representa­
tion R V of L is obtained. 

2. THE LITTLE GROUP OF UN 
From Ref. 2, Eq. (7), the group law of L is given by 

(a', {3', (]I',5')(a, {3, (]I,5) = (a", (3" ,a" ,5"), (1) 

where 
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a" = a' + a+ t(A'(]I.C'(]I +H'{3.D'(3) 

+B'{3.C'(]I+ (]I'. (D'{3 + C'(]I) , 

{3" = D' {3 + C' (]I + {3' , 

5" =5'5, 

with 5' = (~: ~:)ESp(2n, R) and 5 ESp(2n, R). 

Every quantum mechanical irreducible representation 
of N is unitarily equivalent to one of the form [Ref. 1, 
Eq. (15)] 

[U~(a, (3, (]I,I)l/J](x) = expiv(a - x.(3)l/J(x - (]I), 

where l{tO) ER, l/J E L 2 (Rn
, C). 

(2) 

The action of 5 = (~ ~) E Sp(2n, R) on U~ is, by definition 
[Ref. 1, Eq. (11)], 

[(5U~)(a, {3, (]I,I)l/J ](x) 

= [U~((O, 0, 0, 5t'(a, {3, (]I,I)(O, 0, 0, 5»l/J](x) 

= expiv(a + t(_DTa.CT(]I _BT{3.AT(3)+BT{3.C T (]I 

-x. (A T{3 _ C T(]I»l/J(x+BT{3 _DT(]I) , (3) 

with T denoting transpose, using (~ ~)-' = (~:T -!;), to­
gether with (1) and (2). 

5U~ is an irreducible representation of N. Restricted 
to the subgroup {(a, 0, O,I)}, it is just the phase expiva. 
H ence SU~ must be unitarily equivalent to U'j", since U'j" 
is the only irreducible representation of N which has the 
required form on restriction to the subgroup {(a, 0, 0, I)}. 

Therefore, there exists a unitary operator W(5), de­
pendent on 5, such that 

5U~ = W(5r'U~W(5) for each 5 ESp(2n, R). (4) 

The orbits of the quantum mechanical part of N under 
the action of Sp(2n, R )thus consist of single points U~. 
The little group of U'k under the action of Sp(2n, R) is 
the whole of Sp(2n, R), and so the isotropy group of U'k 
is N®3p(2n,R) (=L). 

Copyright © 1977 American Institute of Physics 1958 



                                                                                                                                    

3. THE OPERATOR W FOR THE GROUP Sp(2n, R) 

A. General approach 

In Ret 3, a method was developed for finding the 
operator W for the group SU(n) [which can be regarded 
as a subgroup of Sp(2n, R)]. This method depends partly 
on the fact that SU(n) has no nontrivial multipliers, and 
so W can be taken to be an ordinary representation of 
SU(n). Now, the group Sp(2n, R) possesses nontrivial 
multipliers, and so it is possible that W is a projective 
representation; hence the method of Ref. 3 cannot be 
applied directly in the present case. Nevertheless, 
since Sp(2n, R) is a connected semi simple Lie group, 
every multiplier is locally trivial; 4 it follows that the 
(possibly) projective representation W of Sp(2n,R) can 
be chosen in such a way that the corresponding repre­
sentation w of the Lie algebra of Sp(2n,R) is ordinary. 

Suppose hj(T) is a one-dimensional Lie subgroup of 
Sp(2n,R). For each one-parameter subgroup lJ.(t) of N, 
let Z"j(T) be the unique skew-adjoint operator defined 
by 

(h;(T)U~)(J.L(t))= exptZ,,;(T) [cf. Ref. 3, Eq. (9)]. (5) 

Then [cf. Ref. 3, Eq. (11)] the skew-adjoint operator 
dW(hj(T»/dT IT=o is determined up to an arbitrary imag­
inary constant ~; by 

dZ"j(T) I =[z,,;(O), dW(hj(T)) I ] 
dT T=O dT T=O 

(6) 

[The proof of this result is similar to the correspond­
ing one of Ref. 3, Sec. 3 A, with expT J replaced by 
W(h;(T».] 

Since the operators dW(h; (T»/ dT I T=O can be chosen to 
give an ordinary representation w of the Lie algebra of 
Sp(2n,R), there are constraints on the constants 
~j; as will be Shown, these are sufficient to determine 
the constants ~j uniquely. 

Since w is an ordinary representation of the Lie alge­
bra of the connected group Sp(2n,R), w exponentiates to 
an ordinary representation, W say, of the connected, ----Simply connected, cover~ Sp(2n,R) of Sp(2n,R). 5 

Sp(2n,R) is the image of Sp(2n,R) under a homomor'­
phism 15 whose kernel is a discrete central subgroup of 
~): Sp(2n, R) '" ~)/kerl5. It is possible to 
show that W maps kerl5 into the unit circle, and hence 
tV determines the required projective representation W 
of Sp(2n,R).6 However, for what follows, it is not ne­
cessary to know Wexplicitly; it is sufficient that the or­
dinary representation w of the Lie algebra of Sp(2n,R) 
is known in detail. 

B. Detailed calculation 

The symplectic group Sp(2n, R) is the set of matrices 
S EGL(2n,R) for which STJS =J, where J =L;;=l (E i,j+" 

- E i+", i) [with E ik a 2n x 2n matrix having 1 in the (j, k) 
position and zeros elsewhere]. Let S(T) be an analytic 
curve in Sp(2n, R), and suppose S(O) =1. Then, differen­
tiating S(T)TJS(T) =J with respect to T, and putting T = 0, 
gives 
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S'(O)TJ +JS'(O) = 0, 

where' denotes differentiation with respect to T, Hence 
the Lie algebra of Sp(2n,R) is the algebra of all ma­
trices of the form (~ _!T), where A, B, and Care n x n 
real matrices, with A arbitrary, B = B T, and C = C T; 
this algebra will be denoted by sp(2n,R). 

A basis for sp(2n, R) is 

Xik=(EJk 0) (l s j,k s n), 

o -Eki 

Y ik = G EJk:EkJ) (l s j S k sn), 

Zjk= ( 0 0) 
Ejk+Ekj 0 

(where E 1m is an n x n matrix having 1 in the (l, m) 
position and zeros elsewhere). 

If 

( 

ajk(T) bjk(T») 
h(T) = 

C ik(T) d Jk(T) 

(7) 

is a one-dimensional Lie subgroup of Sp(2n, R), then, 
from (3) and (5), the representatives of the generators 
of N in the ordinary representation h(T)U'j, of N are 

Za(T) = iv, 

n " 0 
ZB.(T)= -iv L aik(T)xk+ L bik(T)-a-' 

J k=l k=l x k 
" n a 

Z'" (T)=iv L Cjk(T)Xk - L dik(T)-a-' 
j k=l k=l x k 

From (6), 

dW(h(T»/ dT I T=O = w(h'(O» 

must satisfy, 
when /1 = a, 

O=[iv, w(h'(O»], 

which is satisfied by any w(h'(O»; 

when J.L = (3j' 

(8) 

n " 0 
-iv L aik(O)xk+ L bik(O) -0- = [-ivxj , w(h'(O»]; (9) 

~l ~l ~ 

when J.L = ai' 

(where' denotes differentiation with respect to T). 

The operator W(X,m) 

(10) 

Suppose, with the above notation, that X,m is the tan­
gent at the identity of a one- dimensional Lie subgroup 

h(T)= (aik(T) bik(T») 

C ik(T) dik(T) 

in Sp(2n,R). Then 

(

a}k(O) 

X,m=h'(O)= C}k(O) 

In this case, the only nonzero elements of h'(O) are 

a;m(O)=I, d~,(O)=-l. 
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Hence the conditions (9) and (10) become 1 

for j *1 or m, 

O=[-ivxj,w(X,m)) and 0=[- a:
j 

,W(X,m)]; 

for j =l, 

-ivxm=[-ivx"w(Xlm )] and alma:, =[ - a:,'W(X,m~; 
for j= m, 

-ivo'rnxm=[-ivxm,w(X,m)] and 0:
1 
=[- a:m,W(X,m)] . 

If l*m, these relations are all satisfied by the skew­
adjoint operator 

where O! 1m is an arbitrary imaginary constant. 

If 1 = m, these relations are all satisfied by 

where Em is an arbitrary constant. Now the adjoint of 
l:{)(X mm ) is w(Xmm )* = (-%xm)*x,;; + Em = (a/axm)xm + Em 
= xm(a/axm) + 1 + Em' Thus iv(Xmm) is a skew-adjoint opera­
tor provided Em" -~+ Cl!mm' where Cl!mm is an arbitrary 
imaginary constant. Therefore, for 1::s l, rn ::s n, 

(Ha) 

The operator w(Y'm) (l < Ill) 

Similarly, the operator w(Y'm) must satisfy the rela­
tions, 

for j * lor m, 

0= [-ivx j, w(Y'm)] and 0 = [ - a:., W(Y,m)] ; 
J 

for j = 1 (*m), 

a:
m 

= [-ivx l, w(Y'm)] and 0 = [ - 0:
1

' w(Ylm )] ; 

for j = m (*Z), 

a:, =[-ivxm,w(Y1m )] and 0=[- a:m'W(Ylm~ • 

These relations are all satisfied by the skew -adjoint 
operator 

(l1b) 

where f3'm is an arbitrary imaginary constant. 

The operator w(Y mm) 

Similarly, the operator w(Y mm) must satisfy the rela­
tions, 

forj,*m, 

0= [-ivxj> w(Y mm)] and 0 = [- 8:. ,w(Y mm8 ; 
J 
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for j=m, 

2-a
8 

=(-ivxm,w(Ymm )] and 0=[- -!-,w(Ym) 0 

xm xm J 
These relations are all satisfied by the skew -adjoint 

operator 

_ 1 8 2 

w(Y mm)" -;- --p- + (3mm , 
tV Xm 

where f3 mm is an arbitrary imaginary constant. 

The operator W(Zlm) (1 <fIl) 

(llc) 

Similarly, the operator w(Z 1m) must satisfy the rela­
tions, 

for j'* lor m, 

O=[-iVXj>W(Z,m)] and 0=[- 8:.,W(Zlm)]; 
J 

for j" 1 (,*m), 

0= [-ivx" W(Zlm}] and ivxm = [ - 8:
1

' w(Z Iml] ; 
for j "m (*1), 

0" [-ivxm' w(Z 'm)} and ivx, = [ - a:
m
' w(Z 1m}] . 

These relations are all satisfied by the skew -adjoint 
operator 

(lld) 

where y 1m is an arbitrary imaginary constant. 

The ojx!rator w(Zmm) 

Similarly, the operator 1I'(Zmm l must satisfy the rela­
tions, 

for j * /J1, 

O=[-il'x j,w(Zmm)] and 0= [-8:,1V(Zmm)]; 
J 

for j = 111, 

O=[-ivxm,w(Zmml] and 2ivxm" [- 8:
m 

,1V(Zmm)] . 

These relations are all satisfied by the skew-adjoint 
operator 

(He) 

where Y mm is an arbitrary imaginary constant. 

C. Calculation of the values of the constants CX, m • ~/m • "11m 

It may be shown that the commutation relations of 
sp(2n, R), in terms of the basiS X jk , Y}k> Z jk [see (7)) are 

[Xjk>Xlm]=OkIXjm-OjmXlk' (12a) 

[Xjk,Ylm]=Ok/Yjm+OkmYjl, (12b) 

[Xjk' Z 1m) = -Ojl Zkm - 0jm Zkl' 

[Yjk,Ylm]=O, 

[Y jk , Z 1m] = 0kmXjl + 0klXjm + 0jmXkl + all X km , 

[Z jk, Z 1m] = 0 , 

M.E. Major 

(12c) 

(12d) 

(12e) 

(12f) 
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where, for convenience of notation, define 

Yjk=Ykj , Zjk=Zkj, for j>k. 

Since w is to be an ordinary representation of 
sp(2n,R), W(Xik ), w(Yjk ), and W(Zjk) must satisfy the 
commutation relations of sp(2n,R). Explicit calculation 
shows that this implies 

-akIO!jm+ ajmO!lk=O, 

-aklf3jm - akmf3j1 = ° , 
ajlYkm + ajmYkl = 0, 

-akmO!JI - ak/O!Jm - aJmO!k/ - aJ/O!km = 0, 

where, for convenience of notation, define 

f31k =f3kJ , Ylk=Ykj, for j>k. 

Condition (l3a) gives that O!jm = ° for j '" m (putting 

(13a) 

(13b) 

(13c) 

(l3d) 

k = l). Condition (l3d) gives that O! JJ = ° for 1:5 j:5 n 
(putting j = k = Z = m). From condition (13b), it follows 
that f3 jm =O for l:5j,m:5n (puttingk=Zhn, ifn>l, and 
j = k = Z = m = 1, if n = 1). Similarly, from condition (l3c), 
Y km = ° for l:5 k, m:5 n. Hence, w is an ordinary repre­
sentation w of sp(2n,R) if and only if the O!'s, f3's, and 
Y'S are all zero. Therefore, from (11), the ordinary 
representation w of sp(2n, R) is determined by 

a 
W(XJk)== -xk-- -ta jk (l:5j,k:5n), 

aX j 

i a2 
. 

W(Y1k )== ----- (l:5J:5k:5n), 
v axjaxk 

W(ZJk)== -ivxjx" (l:5j:5k:5n). 

(14) 

4. THE IRREDUCIBLE ORDINARY REPRESENTATIONS 
OFL 

It now follows from Mackey's theory for semidirect 
product groups that every quantum mechanical irredu­
cible ordinary representation of L =N®Sp(2n,R) is uni­
tarily equivalent to one of the form 

U~W @ 7): (0',13, o!, 5) 

-expiv(O' - x.(3) exp (- to! J -:-:) W(5)@7)(5), (15) 
j=1 x J 

where (0',13, O!, 5)E L, W is the projective representation 
of Sp(2n,R) determined up to trivial multipliers by (14), 
7) is an irreducible projective representation of Sp(2n, R) 
with multiplier inverse to that of W, and the operators 
in the first part of the inner Kronecker product are de­
fined on a dense subspace of L 2 (Rn,C). 

5. HEURISTIC ARGUMENTS SUGGESTING THAT 
(Rv.j. L):: UNW0 W 

To simplify the notation denote R V + L by R~. The re­
sult stated above was found through an attempt to de­
compose R~ into irreducible representations of L, of 
the form (15). It was hoped that the decomposition of 
R~ would be suggested by that of R~ + (N@SU(n». The 
decomposition of R~ + W@SU(n» may be obtained as 
follows. From ReL 2, Sec. 5, 

R~ + <.N®SU(n» = (D(H) + L) + <.N®SU(n» , 
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where D is the representation of the subgroup 
H = {(a, 0, 0, l)}x Sp(2n, R) of L, given by 

D: (0',0,0,5) - expivO' . 

Hence R~ + <.N@SU(n» is the restriction of an induced 
representation of L. Since N@SU(n) and H are closed 
subgroups of the separable locally compact group L, 
and L can be expressed as a single double coset of 
N@SU(n) and H: L =N@SU(n)(O, 0, O,I)H [from (I)J, 
Mackey's subgroup theorem7 may be applied, 

(D(H) + L) + (N@SU(n»=D«N®SU(n»nH) + <.N@SU(n», 

Therefore, 

R~ + <.N@SU(n»=D(C x SU(n» + <.N®SU(n» , 

where C={(O',O,O,I)}. 

(16) 

The group N®SU(n) is locally compact, but not com­
pact, so the Frobenius reciprocity theorem7 does not 
necessarily hold for it. However, a formal applica­
tion of the theorem may, nevertheless, give the correct 
decomposition of R~ + <.N®SU(n». 

SUppose U ~ W@ 7) is an arbitrary quantum mechanical 
irreducible representation of N@SU(n), where W is now 
regarded as an ordinary representation of SU(n) (Ref. 3, 
Sec. 4). Then, formally, 

(R~ + <.N@SU(n», U~W(7)>N®SU<n) 

= (D(C x SU(n» + <.N@SU(n», U~W(7)>N®SU(n) 

= «U~W@7) + (C x SU(n», D(C x SU(n»)CXSU(n)' (17) 

The representation D: (0',0,0, U) - expil'O" of ex SU(n) 
is contained in the representation U ~ W(7): (0",0,0, U) 
-expitO'W(U)@1)(U) of C x SU(n) only when t= 1'; in this 
case, the number of times that D is contained in U~W 
(7) [as representations of C xSU(n)] equals the frequency 
of the one-dimensional identity representation ISU(M) in 
the representation U - W(U)~7)(U) of SU(n). 

Now, from Ref. 3, Eq. (23), 

W@7)=(EB Wa)@7)=EB(Wa@7). (18) 
a=o a==Q 

It thus remains to determine, for each a, how often 
ISU(n) occurs in Wa CS7). A general method for decompos­
ing inner Kronecker products of irreducible representa­
tions of SU(n) is given in Ref. 8. 

When v> 0, from Ref. 3, Eq. (29a), 

Wa = IJ.' jl = (a, 0, •.. ,0). 
a box~s 

It follows that, when 1'>0, Wa@7) contains ISU(n) if and 
only if 

U"j ...... 
7) = • .• •• n - 1 rows = (a, ... , a, 0) . ...... 

... 
~ 

a columns 

When v < 0, from Ref. 3, Eq. (29b), Wa = (a, •.. , a, 0), 
It follows that, when v<O, Wa @7) contains ISU(n) if and 
only if 1) = (a, 0, ... ,0). 
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Now the representations (a, 0, •.. ,0) and (a, •.• ,a, 0) 

are mutually contragredient,B so, since W. is unitary, 
the representation contragredient to W. is just the com­
plex conjugate Wa of Wa' 

So, for any v(*O), I su<n) occurs in Wa ®1) if and only if 
1) = w., and then it occurs exactly once. Hence, using 
(18), D is contained in U~W®1) [as representations of 
C x SU(n)] if and only if t = v and 1) = W. for some a; in this 
case, D occurs exactly once. 

A formal application [(17)] of the Frobenius reciprocity 
theorem therefore suggests that the decomposition of 
R~ t (N®SU(n» into irreducible representations is 

R~ t (N®SU(n»"" ffi (UX.W®W.). 
a=O 

Now 

E9 (uX.W®Wa) = UX.W® (ffi Wa)= UX.W®W. 
a~ a=Q 

This indicates that, perhaps, the representation R'L of 
L is unitarily equivalent to Ux. W®W, where W is now 
regarded as a projective representation of Sp(2n, R). 
UX.W®W is an ordinary representation of L, since W 
has multiplier inverse to that of W. 

From Ref. 1, Eq. (26), and Ref. 2, Eqs. (27) and (44), 
it follows that the restrictions of R~ and UX.W®W to the 
subgroup G of L are certainly unitarily equivalent, 

V"l(R~ t G)V = (UX.W® W) t G , (19) 

where V is the operator defined in Ref. 2, Eq. (43). 

The operator V was chosen so that the representations 
of the generators of the subgroup N of G transformed in 
the required manner. Once V had been chosen in this 
way, it happened that the representations of the remain­
ing generator of G also transformed in the required 
manner. 

These heuristic arguments suggest that, perhaps, 
V"lR~V=UX.W®W as representations of L. 

6. STATEMENT AND PROOF OF RESULT 

Theorem: 

V"lR~V=UNW®W (v*O), (20) 

where R~ = R V t L is van Hove's representation of L [Ref. 
2, Eq. (12)], Ux. is a quantum mechanical irreducible 
representation of N [(2)], V is a unitary operator de­
fined on L 2 (R2",e) [Ref, 2, Eq. (43») and W is a projec­
tive representation of Sp(2n, R) [Sec. 3]. 

Proof: 

Method: Every element 1 E: L =N®Sp(2n,R) can be ex­
pressed uniquely in the form 1 = n'S, where n' E:N, 
SE:Sp(2n,R). From (19), the restriction of the theorem 
to N is certainly true. Hence, since V-IR~ V is an or­
dinary representation of L, it is sufficient to show that 
the theorem holds for Sp(2n, R). 

Since Sp(2n, R) is a connected Lie group, every ele­
ment may be expressed as a product of elements of one­
parameter subgroups. 9 As (V-IR~ V) + Sp(2n, R) is an 
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ordinary representation of Sp(2n,R), it is thus enough 
to prove the theorem for a set of independent one-pa­
rameter subgroups which generate Sp(2n, R). 

If h(T) is a one-parameter subgroup of Sp(2n,R), then 
(V"lR~ V) + h(T) and (W®W) .. h(T) are unitary ordinary 
representations of the one-parameter subgroup her), to 
which stone's theorem may be applied. Hence, it is 
sufficient to show that V transforms the representation 
r~ of sp(2n,R) into the representation w®w of sp(2n,R) 
[where rL w ®w are the representations of sp(2n, R) 
corresponding to the representations R~, W®W of 
Sp(2n,R), respectively], 

The representation w®w 

Suppose W acts on functions [E:L 2 (R",e)] dependent on 
x E: R", and that W acts on functions [E:L2(R", e)l depen­
dent on Y E:R". Let her) be a one-parameter subgroup 
of Sp(2n,R). Then 

(w®w)(h'(O»= w<h'(O» + w(h'(O» (21) 

(where I denotes differentiation with respect to r). 
w(h'(O» may be obtained from w(h'(O» by replacing xm by 
Ym (m = 1, 2, ., , ,n), and taking the complex conjugate. 

From (14) and (21), it follows that 

a a 
(W®W)(Xjk) = -xk-a- - Yk-a- - Ojk (1:5 j, k:5 n), 

Xj Yi 

(W®W)(Yjk)=~(--a a: +~) (l::5j::5k:5n), 
v XjXk YjJk 

(w®~(Zjk)=iv(-XiXk+YiYk) (l::5j:5k :5n). 

Explicit expression for rWl'{O» 

(22) 

By definition [Ref. 2, Eq. (12)], R~ t Sp(2n, R) is given by 

[R~ (y)<p ](q, p) = expivlTy (y-l (q, p) )<P(y-l (q, p» , 

where 

y= ~,o,o,C ;))E:Sp(2n,R)' 

lTy (q,p) = tAp.Cp+ tBq.Dq+Bq.Cp, 

and <p E: U(R2",e). Therefore, 

[R'L(y)<P ](q, p) = expiv[ t(_ABTq +ADTp). (-CB Tq + CDTp) 

+ t(BA Tq _ BCTp).(DA Tq _DCTp) 

+ (BATq _BCTpL(_CBTq+ CDTp)] 

(23) 

Suppose her) = (~gl ~~m is a one-parameter subgroup 
of Sp(2n,R). Then, from (23), sinceA(O)=I"=D(O) and 
B(O)=O=C(O), 

[r~(h'(O»<P ](q, p) = ! [R'L(JZ(T»<P ](q, p >L=o 

= t i~ (p.C'(O)p+B'(O)q.q) 

" f. a 
+ ~\(A'(O)Tq_C'(O)TP)m 8qm + (_B'(O)Tq 

+D'(O)TP)m a;JJ<p(q,P). (24) 
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The action of V 

From the definition of V [Ref. 2, Eq. (43)], 

V-Iq V=~ - ---. ( a a ) 
i V aXi aYi ' 

V-lPiV=Xi+Yi' 

a V-I-a- V=ivxi , 
qi 

a a V-l __ V = __ • 
aPi ay j 

Evaluation of V-Ir~(Xik)V 

In this case, from (7), 

A'(O)T=Ekj , B'(O)=O, 

C'(O)=O, D'(O)T=-E}k" 

Hence, from (24), 

a a 
r~(Xik)=qi-a- -Pk-a-· qk Pj 

Therefore, using (25), 

(25) 

V-lr~(Xik)V = (V-lqjV) (V-I a:
k 

V) - (V-IpkV) (V-l a;, V) 

a a 
= -xk-- -Yk-- - 6jk aXj aYi 

= (w0w)(Xik) from (22). 

Evaluation of V-lr~(Yjk)V 

From (7) and (24), 

v ). a a 
rL(Yik =wqjqk -qk api -qj ap

k 
• 

Therefore, using (25), 

V-lr~(Yik)V = -~(~ _;.J (-:- -l-) -~ (~ 
v XJ y) Xk Yk v aXk 

-a; J (a; i ) - ~ (a: j - a; i) ( a; k ) 

= (w0w)(Yik ) from (22). 

Evaluation of V-Ir~(ZJk)V 

From (7) and (24), 

V(Z ) . a a r L jk =wPJPk-Pk-a--Pj-a-' 
qj qk 

Therefore, using (25), 

V-Irr.(ZJk)V= iv(x j + Y j)(xk+ Yk)-(Xk+ Yk)(ivx)-(x j + Y j)(ivxk) 

= (w0W)(ZJk) from (22). 

This completes the proof of the theorem. 

7. THE DECOMPOSITION OF THE PROJECTIVE 
REPRESENTATION W OF Sp(2n,IR} 

From Ref. 3, Eq. (28), 

W(Sp(2n,R»+ SU(n) = EB w,;, 
4=0 
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where Wa is an irreducible ordinary representation of 
SU(n) defined on the subspace Oa of L 2 (R",C) (Ref. 3, 
Sec. 5) . 

SUppose 0 is a subspace of L 2 (R",C) which is invariant 
and irreducible under the projective representation Wof 
Sp(2n,R). Then, a priori, 0 is invariant, although not 
necessarily irreducible, under W(Sp(2n,R»t SU(n). 
Hence 0 is a direct sum of closed subspaces of L 2 (R",C) 
which are invariant and irreducible under W(Sp(2n,R» 
t SU(n). Since the irreducible representations Wa of 
SU(n) have different dimensions, they are inequivalent, 
and hence, by the uniqueness (up to unitary equivalence) 
of the decomposition of W(Sp(2n, R» t SU(n), it follows 
that 0 must be a direct sum of subspaces of the form 

°a' 
SUppose 0 contains the subspace Ob spanned by the set 

{I/Jm :6;=1 mj '" b}. Since 0 is invariant under the projective 
representation W of Sp(2n,R), the space generated by 
nb, w(Xjk)Ob (1:5 j, k:5 n), w(Y jk)O~ and w(Z Jk)nb (1:5 j 
:5k:5n) must be contained in n. Now, from (14) and 
Ref. 3, Eq. (21), for j *k, 

Therefore, 0 contains elements which are linear 
combinations of elements belonging to O~2' Ob' and 
0b+2' Hence, since 0 is the direct sum of subspaces of 
the form 0a, n must contain the subspaces 0b_2' nb+2 as 
well as 0b' By induction, it follows that 0 contains all 
the subspaces Oa for which a has the same parity as b. 

Hence, the projective representation W of Sp(2n,R) 
splits into at most two irreducible projective repre­
sentations. 

From the form of the representation w of the remain­
ing basis elements of sp(2n, R) [(14)], it follows, again 
using Ref. 3, Eq. (21), that the subspaces 

" neven, spanned by {<Pm: 6 m J is even}, (26a) 
i=1 

and 

" 
OOdd' spanned by {I/Im : 6 m J is odd}, 

i=1 
are each invariant under the representation w of 
sp(2n, R). 

(26b) 

Therefore, the decomposition of the projective repre­
sentation Wof Sp(2n,R) is 

W = Weven EB Wodd ' (27) 

where Weven, Wodd are irreducible projective representa­
tions of Sp(2n, R) (namely the restriction of W to the 
subspaces 0even, 00dd respectively). 
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8. THE DECOMPOSITION OF THE REPRESENTATION 
R

V t L 

W~L~U~W®W 

= U~W®(WevenEEI Wodd ) 

= (U~ W ~ W even) EEl (U~ W ® WOdd ) • (28) 

Now Weven and Wodd are irreducible projective repre­
sentations each of which has the same multiplier as W; 
so Weven and WOdd are irreducible projective represen­
tations each of which has, multiplier inverse to that of 
W. Hence, from (15), U~W®Weven and U~W®Wodd are ir­
reducible ordinary representations of L. 

It follows that the representation R V ~ L (v"* 0) splits 
into two irreducible ordinary representations of L. 

9. CONCLUSION 

As far as the anisotropic harmonic oscillator is con­
cerned, almost all reference to van Hove's paperlO can 
be removed. For clarity, let WSP(2n.R) denote the pro­
jective representation W of Sp(2n,R) determined by (14). 
Van Hove's representation R V ~ L [defined in Ref. 2, Eq. 
(12)] can now be replaced by the unitarily equivalent 
representation U~Wgp(2n.R)®WSP(2n.R); all that is then 
required from van Hove's paper is the action of Sp(2n, 
R) on N in the definition of N@Sp(2n,R). The main re­
sults obtained can then be summarized as follows. 

Main re sults 

1. A group G intrinsically related to the anisotropic 
harmonic oscillator has been constructed: G is essen­
tially a group generated by the position and momentum 
observables, the identity operator, and the Hamiltonian 
of the sy stem. G can be regarded as a subgroup of the 
group L =N@Sp(2n,R) (where N is the Weyl group). Let 
W BP(2n. R) be the projective representation of Sp(2n,R) 
which intertwines the irreducible representations U~ 
and 5 U~ of N [where 5 E Sp(2n,R)]. Then the degenera­
cies of the energy levels of the anisotropic harmonic 
oscillator occur in the following way (whether the fre­
quencies are rationally related or not). 

(U~WsP (2n.R)®WSP (2n.R) t C; = EBdw,sUG'-(sgnv)s, 
s 

where dw. s is the degeneracy of the energy level Ew. s 

of the n-dimensional anisotropic harmonic oscillator 
with frequencies (w" IJJ

2
, ••• ,wn), UG'-(sgnv)s is an irredu­

cible representation of G, and the summation may be 
regarded as over all distinct energy levels Ew. s of the 
system. 

II. Every quantum mechanical irreducible (ordinary) 
representation of L is unitarily equivalent to one of the 
form U~WBP(2n.R)®l1Sp(2n.R)' where l1Sp(2n.R) is an irredu­
cible projective representation of Sp(2n,R), with mul­
tiplier inverse to that of W so (2n. R)' 

III. The (ordinary) representation U~W so (2n. R) ®WSp(2n.R) 
of L (see I) splits into two irreducible (ordinary) repre­
sentations of L. 

IV. Denote WSp(2n.R) t SU(n) by WSu(n)' Then U~WSU(rI) 
is an irreducible (ordinary) representation of N @SU(n); 
when U~WSU(n) is restricted to SU(n), which is a degen-
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eracy group for the n-dimensional isotropic harmonic 
oscillator, its decomposition is 

(U~ WSU(n)+ SU(n) = ffi Wa , 
a=Q 

where Wa is an irreducible (ordinary) representation of 
SU(n), of dimension equal to the degeneracy of the 
(a+ 1)th energy level of the n-dimensional isotropic har­
monic oscillator. Hence, N@SU(n) is a noninvariance 
group for the n-dimensional isotropic harmonic oscillator. 

This alternative expreSSion of the results illustrates 
more clearly the structure of the representation of L 
which yields the degeneracies of the anisotropiC har­
monic oscillator (see n. The Weyl group N, together 
with its irreducible representation U~, is also seen to 
be important. Lastly, the alternative expression em­
phasizes the significant role played by the projective 
representation WSP (2n. R)' 

Note: The original parametrization of G was chosen 
in such a way that it would immediately fit in with that 
used by van Hove.lO Now that the connection with van 
Hove's representation R V is no longer required, the 
group L can be parametrized in other ways. One al­
ternative parametrization which involves Sp(2n,R) in a 
more intrinsic way is obtained as follows. 

The Wey 1 form of the commutation relations [Q j' 1\] 
=i6 jk 1 is 

U (a)V(j3) = expia,{3V({3)U(a) , (29) 

where a - U(a), {3 - V(j3) are unitary representations of 
the additive groups of momentum space (""R") and con­
figuration space ("" R") respectively. 11 

Putting (a,)3, a) = expia V(j3)U(a), with a ER, yields the 
group law of the Weyl group N in the form used earlier 
[Ref. 1, Eq. (12)] 

(a',)3', a')(a,)3, a)= (a' + a+ a'.)3, i3' +)3, a' + a). 

Alternatively, let lVl = configuration space EEl momen­
tum space (""R2"). Define the nondegenerate skew-sym­
metric bilinear form [ , ]: iVl x 11-1 - R by [y 1> y 2] = a 1.)32 
- a z.)31> where Yi = ()3i' ai) E 1'1'1. Now put (a, y) = expiaZ(y), 
where a ER, and Z (y) = exp(i/2)a.)3V(j3)U (a). Using (29), 
the group law of N then takes the form 

(a', y')(a, y) = (a' + a+ My', y], y' + y). 

It is easily verified that the group Sp(2n, R) can be 
characterized as the set of all 5 EGL(2n,R) which satis­
fy [SYl> SY2]=[Yl> Y2]' for any YiERZ". 

The group law of L = N@Sp(2n, R) can then be taken as 

(a', y',5')(a, Y,5)=(a' + a+ t[y', S'y], y' +5y, 5'5). 

The connection between the two parametrizations of 
L is (a, )3, a, S) = (a + ta.{3,)3, a, S). This change in pa­
rametrization means that the relation (a, )3, a, 1) = (a, 0, 0, 
1)(0, )3, 0,1)(0,0, a, 1) is replaced by (a, )3, a, 1) = (a + ta.)3, 

0,0,1)(0, )3, 0,1)(0, 0, a, 1), with corresponding minor 
modifications in several places. The characterization 
of Sp(2n,R) as a group leaving [ , 1 invariant results in 
easier calculations in one or two places, but does not 
lead to any overall simplifications. 
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A finite quantum electrodynamical base for many photon 
collective phenomena * 

M. Stelzer, J. MOhlstein, and V. Ernst 
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We analyze the interaction of many "nonoverlapping" atoms with the common radiation field of 
transverse photons over a continuum of modes. Typical effects of quantum optics arising from this 
interaction require extensions to very high powers in the coupling constant e and diverge therefore within a 
systematic perturbation approach. Since renormalization to such high orders is not feasible in practice. we 
formulate for the purpose of quantum optics "a new peace treaty between QED and its infinities." This is a 
compromise between the necessity of including effects of very high powers in e and the trivial demands for 
finite results. We show that a unitary time evolution operator exists if, in essence. only any finite number 
of levels of each atom is treated as "existent." We convince ourselves that the limits of the concept of 
"nonoverlapping atoms" are reached long before any infinities can enter. The resulting theories meet still 
reasonable requirements with respect to the dualism of light. Dicke principle. and causality. They are 
formulated so that some practical demands of quantum optics (homogeneous and inhomogeneous line 
broadening. Doppler effects) can be met easily if desired. 

1. INTRODUCTION 

Typical processes of quantum optics, the most com­
mon one being the creation of a spike in a laser, involve 
the simultaneous emission of many photons by many 
atoms. In the "order hierarchy" of the Feynman-Dyson 
expansion of quantum electrodynamics (QED) such pro­
cesses are of very high order m, typically m ;, 106 

- 1020. The Feynman rules tell us namely that a "coher­
ent" process involving the emission of -m photons re­
quires at least an expansion to the order m in the cou­
pling constant e. Actually, the needed order is much 
higher because the typical processes of quantum optics 
arise from many photons exchanged between the active 
atoms and each absorption-reemission act of a photon 
by any atom requires at least two additional orders in e. 
The above m accounts only for the "final" emission of 
each photon. But for m ;,2 the results of a systematic 
perturbation approach are divergent, in general, and 
must be renormalized to the high orderS mentioned. 
This is not possible in practice. Therefore, "the peace­
ful coexistence of QED with its infinities"l cannot be ex­
tended to quantum optics, its most challenging offspring. 
We therefore formulate here for the typical problems of 
quantum optics a "new peace treaty" which guarantees 
finite results in any finite step of calculation and, in our 
opinion, still meets all essential and reasonable de­
mands of a quantum field theory of optical phenomena. 
These demands are: 

1. Von Laue2 showed in 1907 that resolvable interfer­
ence effects cannot occur in light from two different 
macroscopical sources if one assumes that the acts of 
emission or absorption of wave trains by different atoms 
are statistically independent processes. Weisskopf3 

pointed out in 1930 that the acts of emission or absorp­
tion of photons by different atoms in a given region of 
space are not independent in principle. Dicke4 seems to 
have recognized first that the necessary coupling of all 
active atoms to the one common, "universal" radiation 
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field R may lead to novel, macroscopically observable 
many photon collective phenomena. In the meantime, 
much work has been done along these lines (cf. Refs. 
5-13 and the long lists of references given especially 
in Refs. 11 and 13). It has become clears- 7 that Dicke's 
collective phenomena must be identified with the laser 
and superradiance effects detected later. The "Dicke 
principle," the necessity of coupling all active atoms to 
the one radiation field R of transverse photons, offers 
indeed the only convincing arguments against the theo­
rem of von Laue. For lack of space we cannot treat 
here the attempts to ignore thisl4 and alternative expla­
nations of laser activity. Compliance with the Dicke 
principle, however, excludes already at this point the 
use of rate equations and necessitates the high order 
expansions mentioned. 

The Dicke principle is an immediate consequence of 
the Bose principle the "photons from different atoms" 
are subject to, and of causality ("exchanged photons"). 
It can be visualized as follows: Let A(x, t) be the 
Heisenberg operator of the observable "transverse part 
of the vector potential" of 1<., and let if! j (x. t) be the 
Heisenberg operator of a fermion field amplitude "asso­
ciated" with an optically active atom AJ. j = 1, .•. ,J. 
We assume that A J carries out a prescribed, nonrela­
tivistic motion so that X{ is its poSition at time t. and 
its potential is given by a real c-number function 
v{(x - X{) "centered" about X{. Let mb denote the effec­
tive mass of the electrons of Al and a, (3 the usual Dirac 
matrices. Then the mutual coupling of atoms through R 
is reflected best by the following Heisenberg equations 
of motion: 

i ~ J/(x, t) =l-iaV + (3m~ + v{(x-X~) +eaA(x, t)j .jJ.i(x, t), 

j = 1 ..... J, (la) 
and 

(lb) 

For J = 1 this yields a version of QED restricted to 
transverse photons. For J> 1 each atom A J reacts, by 

Copyright © 1977 American I nstitute of Physics 1966 



                                                                                                                                    

(la), on the common R, "represented" by its observable 
A(x, t). A(x, t) plays in (la) the role of an operator vec­
tor potential for Ai. But by (lb) it has all atoms as 
"sources," namely the transverse part ( ... )tr of the 
"current" e q;+i (x, t)aq;J (x, t) associated with Ai and, in 
essence, "localized" about xl. So all atoms "see each 
other" through R, and it is no longer allowed to speak 
of interaction processes of single atoms: There are 
only collective interaction processes. Note that all pos­
sible collective processes are described by the one 
operator solution (lj>i(X, t),A(x, t)) of (1). These Heisen­
berg operators namely have the corresponding Schro­
dinger operators as initial values. As the latter are al­
ways given and unique, only this one solution of (1) can 
be of interest to us. 

2. The "dualism of light" requires the quantization of 
the electromagnetic field as in (1) (or some equivalent 
not yet known). It has been shown beyond doube5

, 16 that 
a laser beam shows dualistic features which cannot be 
accounted for by a "classical electromagnetic wave" 
E(x, t), B(x, f). 

3, Signals transferred by photons should a priori have 
the freedom to move and spread like classical electro­
magnetic waves in free space. This requires at least a 
complete set of "modes" of R and thus forbids the usual 
"self-consistent coupling of the active atoms to few dis­
tinguished modes" only. Because of (1) we can expect 
causality to hold in a theory defined by (1); care must 
be given, however, that this is not lost in later approxi­
mations (cf. Sec, 7). 

4. A finite base of quantum optics should be as simple 
as possible, provided that this is compatible with 1-3. 
If the desired solution of (1) exists it contains the re­
sults on all possible states of the coupled system of one 
Bose field Rand J Fermi fields associated with J atoms. 
In particular, each fermion field could still be in a state 
of Si quanta, i.e., Ai can still be any "sf-electron 
atom," Si =0, 1,2,'" (cf. Sec. 3, however). The desired 
solution of (1) describes all these possibilities. There­
fore, an equivalent of (1) must be found which allows us, 
for example, to consider "one-electron atoms" only. In 
principle we can achieve this easily, and without any 
loss in comparison with (I), but in practice this requires 
some tedious work (Sec. 3). 

5. In practice it is necessary to account also for the 
influence of the surrounding of the active atoms (heat 
bath, finite temperature T,' .. ) and for the influence of 
their motion (Doppler effects) on the effects arising 
from the Dicke prinCiple. Details on this are formulated 
in Sec. 2. 

Our compromise between these demands and the tri­
vial necessity for finite results is based on the hierarchy 
of unitary Weisskopf-Wigner theories systematized re­
cently.1? Its main clauses will be discussed in Sec. 7 
when more details are available. Following Ref. 6, we 
extend here the ideas of Ref. 17 to the interaction of 
many optically active atoms A 1 

•• 'Ai withR. As no new 
mathematical ideas are needed, we take the occasion to 
meet also the practical demands 4 and 5 (cf. Sec. 2). 
Our main concern will be the absence of infinities, how-
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ever. The literature on quantum optics is marred with 
infinities which have nothing to do with the field theore­
tical problems of (1). Our results should be useful to 
avoid such erroneous, but nonetheless irritating, infini­
ties. One may also forget the irritating scruples one 
had to have when infinities did not occur in processes, 
e.g. Ref. 6, which in perturbation theory are of order 
-lO'la. Not much is known about the convergence of the 
approximation method suggested (cf. Sec. 7), but this 
holds for the renormalized perturbation series as well. 

In Sec. 2 we formulate phySical postulates which lead 
to (1) and take account of the above demands. In Sec. 3 
we discuss additional postulates which are sufficient to 
guarantee the existence of finite results. In Sec. 4 we 
"restrict" Eqs. (1) to one-electron atoms. Sections 5 
and 6 contain the proofs of existence of finite results. 
In Seco 7 we collect some conclusions and an outlook on 
further problems. 

2. A FORMAL DERIVATION OF EQs. (1) 

At the beginning we formulate nine postulates P)-P9 

which allow the formal derivation of (1). This permits 
a review of the rich physical content of (1) and the intro­
duction of the necessary notation. 

PI: Each actil'e atom Ai is determined b::,' a gil'en, in 
general, time-dependent c-number potential V{(x, t) 
"centered" about the origin Xi = 0 of the coordinates Xi 

of the rest frame of Ai. The dependence on.i accounts 
in a phenomenological way for effects of the "individual" 
surrounding of A' on the properties of A j, in particular 
on its eigenvalues and eigenstates. The atoms are there­
fore "different," in general. The time dependence ac­
counts for "dynamical" surrounding effects causing fluc­
tuations of the effective potential, as arising, e.g., from 
lattice vibrations. Motion of "Ai as a whole" is intro­
duced by 

P2 : Each atom A j moves in the laboratory system on 
a prescribed space curre X{ so that the atoms nez'er 
ol'erlap and the instantaneous z'elocity X{ of Ai reZatil'e 
to the laboratoYJ' system is always small against the 
l'elocity of light. This implies that Galilei instead of 
Lorentz transformations can be used for the transition 
from the common laboratory system to the individual 
rest frames. The potential of Ai in the laboratory sys­
tem thus is V{()I: -X{). 

Ps: In the laboratory system the equation of motion 
for one electron in the potential V / (x - X~) slwll read 

d j . 
i dt v (x-X~, t) 

= [a(-i a:) +f3m~ + V{(X-X{)] ~.i(x_X{, t). (2) 

The choice oj V{(xi)shall be restricted by the condition 
that there exists a set of solutions of (2) of lhe form 

v i(X_X{ , t) =u Lj(x- x~)exp( -i ~t dt ELo,) (3) 

whereE{,a >0 and u/.o,(x i
) depends ''weakly'' on t. The 

set 01 allJunctionsuLa/x-X~), characterized and dis­
tmgulshed from each other by the ('allies oj an index a

j 
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comprising a set of necessary quantum numbers, shall at 
any time t be orthonorrnal and complete in the Hilbert 
space L 2 (R3

) EI1 L 2(R 3)of "electron" solutions of the 
Dirac equation (2). Since we consider "electron" states 
only, we have E~ ~ m~ and condition E{ a > 0 poses not an 

• j .. 

essential restriction. The completeness of the 1/
' 

a. (x') ....... , 
is needed for the "derivation" of (1). A Dirac, 
instead of a Schrodinger or Pauli equation, was 
chosen to avoid the later occurrence of a term 
A2 (x) which might be small in the unquantized versions lB 

but becomes infinite in the quantized theory. Since 
V{(x-X{) is "concentrated" about the point x=X~., the 
essential solutions of (2) will in essence also be "con­
centrated" about the point x = X~. We say that Ai" is at 
Xi" 

t· 

The "weak" time dependence of the "pseudo eigen­
functions" uta/Xi) need not be specified quantitatively. 
Its purpose is the following: If Vf(x i ) is independent of 
t, vi(x - xf, t) shall assume the form lI~i(Xi) exp( -itE~J) 
with "proper ," time-independent eigenfunctions u~J(Xi) 
and eigenvalues E~i> O. We accept so that in the transi­
tion from the laboratory system to an individual rest 
frame a term jqv is neglected against the term aV in 
the Dirac equation; note that I a I = 1» Ix; I. A time 
dependent potential in general does not allow for such 
solutions. But even under strong "dynamic perturba­
tions" we can expect that solutions of form (3) exist, 
which contain the strong dependence on t in the form of a 
phase factor. Otherwise the fiction of "atomic states" 
and of "transitions between them" loses its meaning al­
together. 

We so try to account for homogeneous (and, if de­
sired, some additional inhomogeneous) broadeningl6 

effects, as now no "static'" eigenvalues and no "sharp 
transition frequencies" exist. So we avoid the field 
theoretical problems, namely additional infinities, 
which arise if the field operators A(x, t) of Rand 
</!J(x,t) of Ai are coupled by corresponding Hamilto­
niansls to the observables of other fields which account 
for homogeneous broadening by surrounding effects 
("heat baths"). We emphasize that homogeneous broad­
ening by the natural width of emission lines and its 
strong modifications arising from the Dicke principle4 

a re fully contained in our theory. One of its aims, in 
fact, is to serve as a reliable base for the derivation of 
such effects. Inhomogeneolls broadening has been intro­
duced by P 1 (different eigenvalues) and by P 2 (Doppler 
broadening). 

P4: El ectrons belonging to different atoms Ai can be 
considered as quanta of different fermion fields. This 
postulate is used silently in practically all works on 
quantum optics. It can be looked upon as a consequence 
of the "nonoverlapping of the active atoms" which per­
mits the exclusion of tunneling and exchange effects of 
electrons belonging to different atoms. The "more cor­
rect" alternative had been the assumption that all in­
volved electrons are quanta of one fermion field, with 
6 j Vf(x -Xn as potential. But electrons of "optically 
inactive atoms" then have the same right to be con­
sidered as quanta of this field. We have made the 
necessary" cut" at a stage where we can gain some 
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advantages without visibly prejudicing the desired re­
sults on quantum optics. P 4 implies that a field opera­
tor IJ/(X, t) (and an individual mass m~, if desired) is 
associated with each atom; in the alternative case only 
one </!(x, t) (and only one ma) would be introduced . 

P 5: Creation and destruction of electron positron 
pairs play no role. This excludes probably the worst 
infinities of field theory, namely vacuum polarization 
effects. In quantum optics it appears well justified. 
In connection with P2 and P 4 it means that the Schro­
dinger operator 1JI;(x) associated with Ai can be spanned 
up by 

(4) 

the sum going over all pseudo one-electron eigenstates 
in the potential of A J. b~J" destructs" an electron in the 
state uL (x - Xn. With the corresponding creation op­
erator b:~ it satisfies the usual anticommutation rela­
tions. </!{(x) depends "weakly" on t because it refers to 
a "field" subject to "external," yet prescribed "pertur­
bations." It is important, however, that the anticom­
mutators 

(¢~J(x), </!{(x' )J+ = o(x - x'), etc., 

are independent of t. 

(5 ) 

P 6: The state spaces of all occllring fermion 
fields are Fock spaces. We are aware of the problems 
involved in choosing Fock spaces as state spaces for 
interaction fields. l9 We try to avoid them by "heuris­
tic" restrictions on the interacting systems. By P 6 the 
operator </!f(x) acts on a fermion Fock space ] ~ whose 
elements It:> will be written in the form 

~ 

If!)=f~lv!)+66" ·6f~(a}, ... ,aj) 
p:la} a'J 

+j b+il j) x bal' •• aP Ve • 
i j 

(6) 

Iv.:> is the vacuum in J~ satisfying b~Jlv~)=o for any aJ• 

f~EC. The f!(a~, ••. ,a~) are antisymmetric c-number 
functions of the "discrete" variables a}, •.. ,aj, subject 
to normalization conditions which restrict If:> to an 
element of ] ~. 

P7: Only transverse photons need to be considered; 
their state space is a Bose Fock space. We consider 
here only the formal implications of P7 ; other conse­
quences are drawn later below. Let] p denote the Fock 
space of elements itl» to be written in the form l 

I 11 p) is the normalized photon vacuum stated defined by 
aKlvp)=O for any KE K. K:=(k,X) comprises the wave 
vector k E R3 and polarization index A E {l, 2} and 
varies over the set K := R3 x {l, 2}. f d3

K'" denotes 
the integral over k E R3 and the sum over A E {l, 2}. 
a

K 
and a: are the usual Bose destruction and creation 

operators satisfying (a
K

, a:.] = o(k - k')ou" f gE C. The 
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/.(Kl , ... ,Kn" n 2: 1, are Lebesque square integrable, 
symmetric c-number functions of n arguments 
Kl , ••. ,Kn subject to normalization conditions so that 
Ifl» is element of a Hilbert space. The Schrooinger 
operator of the observable A(x) of the radiation field 
R is given by 

( ) 1 J d3 (K) (jkll -jtz +) 
A x = (21T)372 K [2W(K))1f2 e a.+ e a., (8) 

to be understood as an operator on] 1>' (K) is the usual unit 
polarization vector satisfying k(k, A) = 0 and (k, A1 )( (k, A2) 
= 0>'1>'2' W(K):= w(k):= w(lkl):= (k2 + J.L2)1/2; J.L2: o is a photon 
mass parameter discussed below. 

Pa: The state space of the interacting system R+Al 
+"'+AJ shall be the Hilbert space 

(9) 

where ® denotes the usual tensor product. H is the 
smallest Hilbert space the basic Eqs. (1) may be de­
fined on possibly. For the practical purposes of quan­
tum optics it is still too large (cf. Secs. 3,4). 

P g : The Hamiltonian of the interacting system R +A1 
+"'+AJshallbetheoperator Ht defined formally on 
H by 

H t := J d3 Kw(K)a;a. 

+ ~{J d3X¢;J(X)[a(-i :x)+mfp+V{(X-X{)-i ~J 

x ¢:(x) + e J d3XA(X)(W(X)a¢!(X»tr}. (10) 

Due to the external forces causing the fluctuations and 
motion of V{(x - Xn the Hamiltonian depends on t. The 
first term is the usual Hamiltonian of free photons. 
The first term in the sum over j is the Hamiltonian 
H~ of the "not interacting" atom A J, chosen so that Eqs. 
(1) result from (10). The time derivative operator in 
H~ acts only on the time dependence contained in ¢:(x). 
Inserting (4) and (3) into H~ we find, using (2) and the 
completeness relation, 

(11) 

This reflects once more that the "fluctuations" of V~(xJ) 
cause homogeneous and inhomogeneous broadening. 
The second term in the sum over j in (10) is the usual 
coupling Hamiltonian of quantum electrodynamics, re­
stricted to transverse photons. The sum over the at­
oms reflects the Dicke prinCiple: All atoms "see" the 
same field R and by this become coupled to each other 
even in the absence of direct atom-atom interaction. 

Postulates Pl-P9 are sufficient for the formal deri­
vation of Eqs. (1). Indeed, let U(t) be the unitary solu­
tion of the equation 

i ~ U(t)=HtU(t), U(O)= 1, (12) 

and define the Heisenberg operators corresponding to 
¢:(x) , A(x) by 
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¢J(x, f) := u+(f)¢f(x)U (f), 

A(x, f) := U+(f)A(x)U (t). 
(13) 

Using the above definitions and commutation relations, 
we easily find that expressions (13) solve Eqs. (1) for­
mally. The postulates P 1 -P 9 so elucidate, indeed, the 
richly structured physical content of (1). 

3. ADDITIONAL POSTULATES AND THE EXISTENCE 
THEOREM 

Unfortunately, however, by all we know, the desired 
U(t) does not exist in a naive sense. Therefore we must 
set up additional postUlates P 10-P 13 which allow the 
proof of existence of a unitary time evolution operator 
which guarantees finite results. 

The exclusion of longitudinal and scalar photons by 
P 7 excludes the Coulomb interaction between the elec­
trons of A j, which must be accounted for on a phenom­
enological base. This has been done, in part, by P 1 so 
that P 7 is in a sense a necessary consequency of Pl' 
The atoms described by (1) are therefore not realistic 
unless we restrict them by 

P 10 : All active atoms are one -electron atoms. From 
the field theoretical point of view this is probably not 
decisive, but the treatment of atoms with more elec­
trons were rather inconvenient. It is of some practical 
importance, however. 

So far it has not yet been necessary to speak of laser 
mirrors: On the "atomic level" a part of the active 
atoms can be chosen and arranged always as "atoms of 
laser mirrors." But mirrors have most probably 
nothing to do with the infinities we want to exclude 
here, nor with the" microscopic creation mechanism" 
of the many photon collectives we want to get a base 
for. They are probably much better introduced at a 
later stage and in a much more phenomenological way, 
just as "electrical wi res" for good reasons do not occur 
in the first prinCiples of classical electrodynamics. In 
view of this we have already imposed conditions which 
in essence require the omission of mirrors. Care has 
been taken that the desired phenomena of quantum op­
tics are not prejudiced and the resulting equations of 
motion still contain solutions describing radiation of 
"black body radiation consistency" as well as solutions 
describing laser or superradiance phenomena. It is a 
later problem to find the condition under which this or 
that occurs. 

P 11: Only a finite number q J < 00 of pseudoeigen­
sfates uf'Bi(XJ ) of each Ai are essential for the inter­
action between R and A 1 + •• '+ A J; all other pseudo­
eigenstates can be treated as nonexisting. This is 
probably the main contribution to the price we have to 
pay for finite results. For the typical problems of 
quantum optics it seems to be acceptable, however: 
Since the "diameters" of atoms tend to infinity as the 
eigenenergies approach infinity or the ionization lim­
it,2o the condition of "nonoverlapping" can be met only 
as long as all atoms remain in their lower states. 
Therefore the fiction of "many atoms" is realizable 
only with atoms with a finite, not too large number of 
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levels. In jact, including too many states oj each atom 
would introduce effects which in the form, as they are intro­
duced, do not occur in reality: Electrons in overlap­
ping states are subject to the Pauli principle which 
does not playa role in our model. One could think also 
of infinitely high potential walls between the atoms. 
But then the eigenstates are not complete and the "sec­
ond quantization" of such atoms is not obvious; for 
example, (4) and (5) were not compatible then. It is 
questionable, finally, whether this was more realistic 
than the fiction of finite level atoms. 

P l2 : For any couple u1. ai(Xi ),uL,(xi ) oj "essential" 
pseudoeigensolutions of Ai the expression 

is an element of L 2(K), i.e., for X= 1,2 it is square in­
tegrable in k, and its norm in L 2(K) is uniformly 
bounded with respect to t. Formally this puts another 
restriction on the choice of V;(xJ). It is satisfiedl7 if 
V:(x i ) is the Coulomb potential. In general it is a con­
sequence of the finite spatial extension of atomic 
(pseudo) eigenstates. In practice, P 12 "forbids" only 
the use of unphysical secondary approximations such as 
the dipole approximation. 21 

P 13: Only ajinite number nSN<oo of photons oj mass 
/l ~ 0 take part in the interaction with the atoms. Al­
ternatively we postulate: 

P~3: The photons have mass /l> 0; all atoms have 
time independent potentials Vi(xJ) and move with the 
same velocity v. It is unlikely that the relative motion 
of the atoms or fluctuations of the Vi(xi) lead to prob­
lems, but we have no technical proof of this. It is clear 
that the restriction to any finite number of photons is 
a priori much more serious that the imposition of a 
photon mass. But in practice it excludes only infrared 
problems which typically involve infinitely many low 
frequency photons. Infinitely many photons of finite 
energy require an infinite total energy. They do not 
occur in realistic quantum optics problems. 

The preCise meaning of P ll-P 13' P~3 will be given in 
connection with the proof of the existence theorem, our 
main results: 

Postulates PI -P 13 or, alternatively, postulates PI -
P 12 and P~3 are SUfficient to guarantee jor any t < 00 the 
existence of a unitary time evolution operator Vet) for 
the interacting sys tern R + Al + ••• + A J. 

This implies, in particular, the absence of any in­
finities in observable quantities, as all transition prob­
abilities are finite with certainty and properly normed 
to 1. See also Sec. 7. 

4. LINEARIZATION OF THE PROBLEM IN THE 
SCHRODINGER PICTURE 

In Sec. 2 the linear Schrodinger equation (12) pro­
vided us formally with the exact solution of the nonlin-
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ear Heisenberg equations of motion (1). For practical 
purposes the latter have still another disadvantage: 
their generality. Despite their formal appearance, the 
operators iJ!i(X, t) in (1) namely do not refer to one­
electron atoms AJ only; they refer simultaneously to 
the "states with pJ electrons in the potential Vi(Xi), 
pi = 1, 2, ... , without mutual Coulomb interaction," and 
to all states with "unsharp electron numbers" as well. 
But, as mentioned already, H is the" smallest" Hilbert 
space where a meaning can be given to (1). To shake 
off some unnecessary ballast we first "reduce," follow­
ing P 10 , Eqs. (1) to one-electron atoms. In the Schro­
dinger picture this can be achieved without any loss of 
physical content with respect to one-electron atoms. 

We note that the Hamiltonian H t defined in (10) com­
mutes with the electron number operator 

(15) 

for each atom. Therefore, if a time evolution operator 
V ( t) exists at all, it must be the direct sum 22 of unitary 
operators V.I ...... /!) defined and acting on the sub­
spaces 

(16) 

of H ,H~'.j being the Prelectron subspace of J~. Cor­
respondingly, H t must be a direct sum 

Ht = EB ••• EB Ht.pl' .... PJ (17) 
PIC! PJ=l 

of Hamiltonians acting on5.1' .... PJ only. Therefore, we 
can restrict our considerations without any loss to one­
electron atoms by considering the time evolution on the 
sector 5 := 51 ...... 1 only. Any element I a) E. 5 can be 
written in the form 

x J d 3
/(1 .. ·/ d3 /(na [a 1 , .. • ,aJJn(/(l"" ,K") 

x a+ ••• a+ b+1 •• • b+ J I v ) I v \ • 
Kl Kn al a J e pi 

(18) 

For n = 0 the integrals are to be understood as a factor 
1. 

Let the restriction of H t on 5, H t.l ••••• l' be denoted 
by H tS' If the theory existed, H tS would generate on 5 
the unitary time evolution operator V 1 .... .I (t) := Vs (t) so 
that the states of the interacting system R + A l + ••• 
+A J at different times t, I Ci(t) = Vs (I) I X), form in 5 a 
"curve" defined by the Schrodinger equation 

(19) 

and an arbitrary I X) E. 5 as "initial state." The best 
definition of the restriction HIS seems to consist of 
writing (19) in terms of the amplitudes a[t; aI' ••. , G J J" 
X (K1, ••• , Kn) of the vector I a (t» and the amplitudes 
x[a1 , ••• ,aJln( Kl"'" Kn) of the vector Ix)= I a(O) in 
the sense of (18). Equation (19) then reads 
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i ~ art; al' ... , a J].(Kl" •• , K.) =(W(K1 )+' .. + W(K.)+ E~ +' "+ E; ) art; al' ... , aJ1.(Kl" •• , /(.) & 1 J 

J 

+ (n+ 1)112f.t~ J d3/CM,*'(X{; aj, aj; /() 

with initial conditions 

( 21) 

The integral kernels Mt*'(Xf;aj,aj; /() are given by 

- eikX{M *'(a a" /() - t j, j' • (22) 

The last expression, withM,*'(ai,a,;/() defined in (14) 
and subject to P 12 , has been obtained by a change of the 
integration variable. 

Equation (20) can be derived from the general Schro­
dinger equation (12) on Hby making for la(t)=U(t)lx) 
an "ansatz" (18), inserting this into (12), introducing 
on the right-hand side a complete set of "intermediate 
states," computing the necessary "elements" of H" and 
carrying out the integration over the many 0 functions 
occurring so. We do not reproduce this tedious deriva­
tion. Some details have been given in Ref. 6 in a simp­
ler, but still characteristic case. We have chosen here 
only an other notation and other normalization conven­
tions, namely those of functional analysis on Fock 
spaces. 23.24 We emphasize that Eq. (20) is exact in the 
same sense as (1); unfortunately, also the solutions do 
not exist in this sense. Yet, though exact, Eq. (20) is 
much more "special" than (1); the right-hand side of 
(20) namely, defines only the one term Ht•1o .... 1 of the 
sum (17) referring to one-electron atoms. We know of 
no convenient way to express this restricted, but exact, 
theory in the Heisenberg picture. 

The sums over the atoms in Eqs. (20) mirror the 
Dicke principle as clearly as (1). It is an advantage 
that the "correspondence principle" now is hidden more 
and thus cannot be misused so easily. A second gain is 
the possibility to consider" special solutions ," for 
example, in dependence on various initial conditions; 
we recall, that (1) has only one interesting solution (if 
at all). A third gain is the linearization of the prob­
lem achieved so. This allows the use of various "sec­
ondary" approximation methods. We emphasize that 
this linearization is not an approximation. The inter­
pretation25 of a corresponding linearization in Ref. 6 
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n=0,1,2, ... , (20) 

as a first order perturbation approximation must be 
rejected. 

5. EXISTENCE OF FINITE SOLUTIONS UNDER 
CONDITIONS P J -P J2 AND P/3 

For technical reasons we prove first the existence 
theorem in the more special case defined by P 1-P 12 and 

P~3' 

Postulate P 12 of all atoms having a finite number q J of 
levels is an "important state hypothesis" in the sense of 
the systematic Weisskopf - Wigner approximation 
scheme.17 We "mathematize" it in the following way: 
Let Q J denote the finite set of quantum numbers a i of 
the qj states uf.Gj(xJ) of Ai which by some phYSical argu­
ments are "important" with respect to some desired pur­
poses. In simple cases we could take only two levels for 
Ai, for example. Generalizing Befs. 6 and 17 we assume 
that all amplitudes art; aI' ••• , aJ ].(/(1" •• , /(n) vanish 
which for at least one Ai contain the index ai of an "un­
important ," "omitted" level of Ai, and we ignore in (20) 
the equations for these amplitudes. Equations (20) thus 
are written down only for the finite set Q := Q 1 X· , , 

x Q J of all sets a := (aI' ••• ,aJ ) of indices of "important" 
levels. We so get a new, "reduced" set of equations on 
the Hilbert space 

5 .= EEl J a = EEl Ii H" o· n, (23) 
aE=Q aE::Q n=Q 

where Ja:=J(al' .... aJ ) is the Fock space of photon states 
"with Al in the state uL

1 
(Xl), A 2 in u~.a2 (X2), •• " and 

A J inu;'aJ(x J)." Ja is the direct sum of the Hilbert 
spaces H~ of all states of precisely n photons, n 
= 0, 1,2, ... , "with A l in ui, a1 (xl), •.. , and A J in 
u;.aJ(xJ)." 50 is a subpsace of 5; 5 namely is the di­
rect sum of all J a • 

It is most likely, but not yet proven, that p.> 0 alone 
is sufficient to guarantee on 50 the existence of a uni­
tary time evolution operator UQ(t), defined by the "re­
duced" equations. To get proven results, we make the 
auxiliary assumption P~3 that all atoms are stationary 
[Ei =Ei u i (xj)=u i (Xi)] and move with the same 

t.Gj 4J' t,aj 4J 
velocity v. This includes the important case v = 0 of all 
atoms at rest, the only case that has been consid­
ered5-9,12.13.17 up to now. So we have now 

(24) 

For the amplitudes of the reduced equations we make 
an ansatz: 
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(25) 

This is a unitary transformation on SQ' Inserting (25) into (20) we find that (25) yields a solution of (20), as 
reduced above, if the f3' s satisfy the equations 

.d 
t dtf3[t; a 1 , ••• ,aJ]n(K!, ••• ,Kn) = [(W(K!) -vkl)+'" + (W(Kn) - vkn) + E~! + ••• + E.;') f3(t; ai' ... ,aJ]n(K!' • .• ,Kn) 

J 

+(n+l)II2.0 6 Jd3KM-#(X J'a a"K) 
0, j, " 

f&laj'O, 

X f3[t; ai' ... ,a'_l' aj, a'''l' ..• ,a J ]".1 (K, K1 , ••• , Kn) 

J n 

+ (n)-1I2'\' '\, 6M'(X" a' a . K ) 
L.J U 0' J' J, v 
'=1 aj' O,V'I 

x f3[t;a l , •.• ,af_l,a"a"I"" ,aJ]n_I(Kll ••• , Kv_l , Kv+I , ••• , Kn). (26) 

The initial state can be any state of SQ' The point of 
(25) is the elimination of the explicit dependence on t 
from the operator HQ which defines the time evolution 
in terms of the f3 'so Ho is defined by the right-hand side 
side of (26). 

As (25) is a unitary transformation on 50 our state­
ment on the existnece of finite solutions under the pres­
ent conditions can be proved by showing that Ho is self­
adjoint on 50' For this we follow, with a slight modifi­
cation, the proof idea of Sec. 4 of Ref. 17: We show 
that HQ is the sum of a self-adjoint operator H~, de­
fined by the first term of the right-hand side of (26), 
and a symmetric "interaction" operator He" defined by 
the other terms, which is bounded relative to H~. The 
theorem of Rellich26 then guarantees the selfadjointness 
of HQ= Hg+Hb. HQ generates, therefore, for any t<oo 
a unitary time evolution operator UQ(t) which together 
with (25) guarantees finite transition probability ampli­
tudes and finite transition probabilities normed to 1. 

Hg is self-adjoint because it is a direct sum of self­
adjoint operators of multiplication, on H~, with the real 
function [(W(K1) -~v)+'" +(W(Kn) -k.v)+E~1 + ••• +E:J). 
We note the inequality 

(W(Kl ) -klv)+" '+(W(Kn) -k"v) 

~(W(KI)-I~I Ivl)+'''+(W(Kn)-lknl Ivl) 

~nj.L(1-v2)112 (27) 

where j.L(1_V2)1/2 is the minimum of the function (k2 

+ j.L2)lk -Ivl Ikl at lkl ~O. This means that the dense 
domain D (Hg) of Hg is contained in the domain D (91) of 
the direct sum 91 of the operators of multiplication, on 
H~, with the number n,n= 0,1,2, •.•. Therefore, and 
becauseEl. +'''+E: >0, we have for any 1(3)ED(H~) 

I J 

I/Hg I (3) II ~ j.L(1 - v2)1/21191 I (3) II, (28) 

with II' •• II denoting the norm on 5 Q' As in Ref. 17 we 
can find for any number E:> 0 a number be> 0 so that for 
any I (3) ED (91) we get 

(29) 

(91+ 1)112 is the direct sum of the operators of multipli­
cation, on H~, with the number (n+ 1)1/2. Of course, 
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D«91+ 1 )1/2):) D (91+ 1) = D (91). Combining (28) and (29) we 
see that for any E:> 0 we can find a b.> 0 so that for any 
1(3)ED(H~) we have 

11(91+ 1)
112

1f3)lI s /l(1 ~V2)1f2 IIHg 1(3)I1+ be lll(3)II. (30) 

We show below that the interaction operator Hi:; satisfies 
for any 1(3) ED«91+ 1)1/2) an inequality 

(31) 

with finite constants q, m. This means that Hb is 
defined at least on the dense domain D «91 + 1)1/2), i.e., 
D(Hi:;):d.D«91+ 1)112). Equation (28) implies D(Hg)~D(91) 
and because of 1) (91) cD «91 + 1 )112) we get (i) D (Hg) 
cD (Hi:;). It poses no problem to verify (ii) that Hb is 
symmetric, i.e., that < f31 Hb I (3) is real for any 1 (3) 
ED (Hb). Combining (30) and (31), we get for any I (3) 
ED(Hg) 

IIHbl(3)II:S j.L(~~)172I1Hglf3)II+bE2qmlllf3)II. (32) 

Choosing (iii) E: smaller than /l(1 - v2)112(2qm'-l, we 
meet the conditions (i)-(Hi) of the theorem of Rellich 
and H Q= Hg + Hb is self -adjoint. 

We must prove, finally, the inequality (31). By the 
definition of Hi:; we have 

IIHb 1(3)11 2= 6 t J d 3Kl '" J d3Kn 
a (. Q n-o 

x I t P {(n+ 1)1/2 J d3KM *'(X~; a" a;; K) 
'=1 o,cQ, 

x f3[al , ••• ,af_l,a;,aJ>I"" ,aJ]".1 

n 

X (K, K1, ••• ,Kn) + (nrl12 6 M'(X~; ai, a,; Kv) 
"=1 

(33) 

For given a and n the integral J d3Kl ••• J d3Kn I' .. 12 de­
fines the square of the norm II" ·I\n of a vector of the 
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Hilbert space H~, this vector being the sum over sever­
al other such vectors, Q!1+{3I' namely the terms of the 
sum over j and ai. Therefore, we can use the triangle 
relation 

II f (O! 1 + ,3/)II~ oS {~ (IIO!/ 11.+ 1113 111.) Y (34) 

with respect to the sum over j and aj. This yields 

(35 ) 

The stars indicate the integration variables of the norm 
II •• '11.. In the last term we have taken into account that 
the sum over II in (33), after the use of (34), yields only 
a factor n. Let m,(a"aj)=m,(aj,a,) denote the norm of 
M'(X~;aj,a,;K) with respect to K, which is finite by Pl2' 
Applying now the Schwarz inequality to the integration 
over K in the first term and using the fact that the 
squa re of the norm in the second term factors, we get 

(36) 

By a simple renaming n + 1 - nand n - 1 - n of the terms 
of the sum over n and the use of lI(n)1/2{3" '11n 

= (n)I/211i3" '1In< (n+ 1)1/21113." '11.= II(n+ I)1/2i3." '1I n, we 
obtain 

IIHb li3)WoS4~ .?SSt ~ m,(a"aj)lI(n+ 1)1/2 
aleO "=ot,.! ajEO, 

(37) 

Using now l~icA 1 ~ (.01 1 C1 12)1/2(.01 I d l 12)1 fz with re­
spect to the sum over j and a~, we get 

f1HQli3)WoS4~ t~t ~ m,(aJ,a~)2qi E lI(n+1)1/2i3[al, ... ,aJ_I,aJ,aJ.I, ... ,al]n( .... ' ... , .. )II~}. (38) 
a( 0 "Co 1.1=1 aje--O ,I \J=! aj'-O, 

Let m denote the finite maximum of all occuring m,(aj,aj), let q, denote the number of levels of A', i.e., the number 
elements in Q j' and put q :=~;=!q J' Then the first term in (38) is not greater than m 2q. The sum over a E Q, of 
course, equals the multiple sum over all a, E Q J' and after a suitable change of the order of summation we find 

The sum in the bracket is equal, for any value of j, to 
11(91+ 1)1/21{3)1I 2 • The sum in front of the bracket there­
fore yields a factor q again. So we get IIHb 1.8)11 2 

oS 4q 2m 2 11(1J1+ 1)1/2 113)112, which is identical to (31) and 
implies [) (HQ );2[) (91+ 1)1/2. 

6. EXISTENCE OF UNITARY TIME EVOLUTION 
UNDER CONDITIONS P.-P.3 

We now relax condition J.i.> 0 to J.i. 2: 0, the condition of 
a common velocity v of all atoms to arbitrary motion, 
and allow the atomic potentials V:(x') to depend on t. 
Instead we assume that there exists a number N < 0() so 
that never more than N photons exist. 
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... 6 II(n+ 1)1/2 

(39) 

Together with the assumption of any atom having a 
finite number of levels this also is an important state 
hypothesis. 21 It will be convenient, however, and for 
reasons of practicability it is even necessary, to con­
sider also theories defined by stronger, more restric­
tive important state hypotheses. For example we might 
wish to treat all atoms as "two-level atoms" and as­
sume' ab initio, that for any emitted (absorbed) photon 
one atom must make a transition from the upper (low­
er) to the lower (upper) level. This still does not yet 
prejudice the typical effects of quantum optics. We now 
prove the existence theorem for any such assumption. 

The above important state hypotheses can be math-
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ematized in the following way: Let I denote any subset 
of the finite set Q 1 X ••• x Q J X N * with N * 
:={O, 1, 2, ... ,N}. Following Refs. 6,17, we assume 

O'[t;all ..• ,aJ]n(K1 , ... ,Kn)=0 for (ap ... ,aJ,n)iI (40) 

and ignore the equations of motion for these amplitudes. 
Physically this implies the ab initio hypothesis that 
transitions are possible only between the states of 
R + Al + ••• + AJ "with n photons and Al in the state 
u~.al(xl), A2 inuL

2
(x2

), ••• , andA J in u;.aJ(X J)" with 
(all'" ,aJ ,n)r=.1. The "reduction" of Eqs. (20) by (40) 
leads to the following equations of motion: 

.d 
1 dt a [t; a p ••• ,a J ]n( K1 , ••• , Kn) 

=(W(K)+"'+W(K)+El +"'+EJ ) 1 n t,41 t,4
J 

x O'[t; ai' ... ,aJ ]n(/(I' ... ,Kn) 

J + 

+ (n+ 1)1/2 6 6 Jd 3KM#(X" a a" K) t t"" , 
'=1 (aj) 

X O'[t;a1 , ••• ,a'_I,a;,a'.I"" ,aJ ]n.l(K, KlI .•. , Kn) 

J n 

+ n-l12 6 6-6 M:(xf; ai, a,; Kv) 
j=1 (aj) V=I 

x O'[t;a 1 , ••• ,a'_lIa;,aJ+I"" ,aJ]"..! 

(41) 

(42) 

The sums 6· over (a;) are to be understood to cover all 
terms where, given (all' .. , aJ ; n) r=. I, (ap "" a'_l1 ai, 
a,.l' ... ,aJ ; n ± 1) is also an element of 1. Equations 
(41) are defined on the Hilbert space 

5 .= EEl .. H(al· .. ··aJ) 
/. (a

1
, ••• ,4J,n)f-_I n • (43) 

We show that they define on 51 a unitary time evolution 
operator V l(t). In particular, for 1= Q 1 X ••• x Q J X N* 
we consider the theory of J atoms with a finite number 
of levels interacting with up to N photons. Another 
choice of I leads to the theory considered in Ref. 6; we 
prove here its existence even in the case when the 
atoms move in an arbitrary, yet prescribed way, and 
are subject to arbitrary external perturbations. 

Let Ht: 1 denote the time-dependent interaction opera­
tor defined in (41) by the sums over j. Then IIH;.IIO')II, 
with 11"'11 denoting now the norm on 51, is given by the 
right-hand side of (33), if the X~ are replaced by X~, 
the M's are allowed to depend on t by the v's, if the 
sum over a r=. Q and n is replaced by the sum over 
(ai' ... ,aJ , n) r=. I, and if finally the sum over a; r=. Q, 
is replaced by the sums occurring in (41). Since all 
these sums contain a finite number of finite terms only, 
the right-hand side of (33) now remains finite for anv 
I a) r=.51. Therefore, H;.I is defined everywhere onS I' 
It poses no problem to verify that (a I H;.II a) is real for 
any I a) r=. 51' Therefore, H;.I is bounded and self -ad­
joint for every t, by well-known theorems of functional 
analysis. 

It will be convenient to know in addition that a time in­
dependent bound B of H;.I exists, i.e., that 

(44) 

for any I a) r=. 51, and to learn something about the mag­
nitude of this bound. 

For this we look at (39), the right-hand side being 
modified as described above. We find easily that the 
considerations leading to (36) remain valid also under 
the present conditions. Since by P 12 the norms of the 
time dependent M's are uniformly bounded in t, we can 
use m t• /a" a;):s In. Using also (n + 1)1/2< (N + 1)1/2, 
(n )112 < (n + 1)1 h, we obtain from (36) 

(45) 

U sing now for A 2: 0, B 2: 0 the trivial estimate (A + B)2 = A 2 + B2 + 2AB:s 3A 2 + 3B2, and with A, 2: 0 and Amax de noting 
the maximal A, the trivial estimate 

('fA,r = E '~IA~J' :SJ2A!ax:SJ2 EA~, (46) 

we get 

IIH;.IIO')11 2 :s 3(N+1)m 2J2 t{ 6 (6·11"'1I~1+6-11"'11~_1)}' 
J=l (41'o •• ,aJ,n)EI (oj) (aj) 

(47) 

with the same terms in the norms n·· '11"'1 as in (45). 
The double sums in the bracket go over all pairs 
(all'" ,aJ,n)r=.I and (ap ••• ,aJ-1 ,a;,aJ+l"" ,aJ,n± 1) 
r=. I. The set of these pairs is identical with the set "all 
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(a p ••• ,a,_pal,a,.p'" ,aJ,n± 1)r=.I with (ap .•. ,aJ,n) 
also r=.I." By dropping the second condition, i.e., by 
adding some nonnegative terms to the right-hand side, 
the double sums can be completed to the square of the 
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norm of I a). The sum over j then yields a factor J, 
and finally we get (44) with 

BSmI6(N+1)J3J!l2. (48) 

Checking critically this derivation, we see that only 
(46) might be poor by a factor -J; in realistic cases the 
completion of (47) to the norm yields a factor of magni­
tude 1 only. Therefore, B is proportional, in essence, 
to the number J of active atoms, which is plausible. 
Note that m contains a factor e2

, but the smallness of 
this factor is compensated by far by the other factors 
which typically are of the order J-10 20 (20 cm3 pink 
ruby) and N - 106 (laser threshold) to N - 1020 (giant 
pulse). 

The first term on the right-hand side of (41) defines, 
as in Sec. 4, on5 1 a self-adjoint, unbounded, yet time 
dependent operator H~, I' Since it is a direct sum of 
operators of multiplication with time-dependent real 
functions, the solution UJ(t) of the equation 

i :t UJ(t)"'H~,rUJ(t), UJ(O)'" 1 (49) 

is given by [cf. P3 and Eq. (3)J 

U~(t) :'" exp( -i 10 t dt'H~, ,I), (50) 

and is unitary on 51; UJ(t) again is a direct sum of oper­
ators of multiplication with complex numbers of modu­
lus 1. 

Since H~, I is self -adjoint and H;. I is self -adjoint and 
bounded, the total Hamiltonian H~,I+H;,I is also self­
adjoint for any t. 

We are ready now to prove the existence of a unitary 
time evolution operator defined by (41). There are 
theorems27 giving sufficient conditions that the equation 

(51) 

with a time dependent, self -adjoint Hamiltonian has a 
unique unitary solution. It is not convenient to check 
whether these conditions are met in our case. Fortu­
nately, we can construct an existence proof by "sum­
ming up the time-dependent perturbation series." For 
this we put U l(t) '" U~(t)V 1(t) and obtain for V/t) the inte­
gral equation 

(52) 

with HI(t) '" U?(t)H;, IUJ(t), Since UJ(t) is unitary on 51, 
HI(t) is also bounded with bound B, The usual Dyson­
expansion 

then converges by the norm, the pth term being bounded 
by (Bt)P/pl. (53) therefore provides the solution of (52) 
which is equivalent to the solution of (51), (41). Unita­
rity and uniqueness follow from standard arguments. 
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The maximal dif ference between an exact solution of 
(41), I a (t» , and the approximate expression I ap(t» ob­
tained for it in pth order perturbation theory is bounded 
by 

(54) 

For given t < 00 this can be made smaller than any E> O. 
but at the price of sufficiently large orders p. The 
necessa ry minimal order p. depends on B. A glance on 
(48) and its discussion shows that time-dependent per­
turbation theory cannot be used practically in typical 
quantum optics problem (see Ref. 21 for problems of 
principle): If for given t the order p. guarantees an 
error smaller than € in a one -atom problem. we must 
sum the perturbation series to order -J' p, to get the 
same accuracy in a problem with J atoms. The situa­
tion is not better in the Heisenberg picture. 

7. CONCLUSION AND OUTLOOK 

The proofs in Secs, 5 and 6 are certainly and neces­
sarily somewhat "mathematical"~ the motivation behind 
all this is purely physical. however. We mentioned in 
Sec. 1, and found still more convincing arguments in 
Sec. 6, that the well-understood and simple order hier­
archy of perturbation theory cannot be used in quantum 
optics. Therefore, it is necessary to consider alterna­
tives, maybe the one presented. Its "order hierarchy" 
can be defined (cf. Ref. 17) by any sequence 

(55) 

of the index sets I introduced in (40), which "tend" to 
the index set r:", Q~ x'" x Q~ x {a, I. 2,···} of the 
"exact" theory of Sec. 4. Qj denotes the set of indices 
a j of all eigenstates of A j' The sequence of unita ry 
quantum theories corresponding to 1° ,]I , ... , all of 
which exist with certainty if all 1's are finite or meet 
the conditions of Sec. 5, then defines the "exact" theory 
as its limit IP - r. However, in the present case this 
potential limit theory is of questionable value: We saw 
in the discussion of P IJ that the inclusion of too many 
states of each single atom introduces effects which be­
cause of the Pauli prinCiple cannot occur in reality. 
The limit theory therefore contains in any case some 
unrealistic idealizations which are the actual cause of 
the "infinities" that occur in the "exact" theory. 

The familiar divergencies of QED appear in a sys­
tematic perturbation expansion already in the order 
m ~ 2 in e. But they occur always in sums over "inter­
mediate" atomic states which because of diverging dia­
meters cannot occur in reality. In a unitary theon' the 
"intermediate" stales must also be possible as fin~l or 
initial states. Therefore. the main clauses of our 
peace treaty should be acceptable by "physical argu­
ments": We postpone the calculation of the influence 
of higher atomic states (which never exist in reality if 
they are high enough! ) upon the transitions between the 
lower states by packing them into the "higher orders" 
in the sense of (55), but in the lowest orders 
1°,11,]2, •.. we include already effects which in a sys­
tematic expansion in e are of high, even infinite order. 
The "divergence problems" are thereby postponed to 
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the" convergence" of the sequence of Weisskopf - Wigner 
theories defined by 1°,1' ,12, . . . . For this we get a 
strictly unita ry time evolution operator in any finite 
step. We leave it to the reader to decide whether the 
"total" exclusion of atomic states which net'er can 
occur ill reality is a "heuristic ad hoc principle." or to 
see in it a first step to exclude unrealistic idealiza­
tions contained in (1). 

At present we aim at another, much more modest 
goal, namely a practical working base for quantum 
optics. This will give us also an example of a "reason­
able choice" 1°.1' , .... It appears namely that one can 
get reliable reslllt s already by the folloll'ing choice of 
the 101l'est order lOB: In quantum optics it appears "ob­
vious" to consider "two-level atoms ," and in view of 
validity of the Bohr relations w = E2 - E, it is likewise 
suggestive to assume, as lhe principle defining the 
lOll'est order, alld thus subject to higher order correc­
tions. that one photon is emitted (absorbed) whenever 
one atom makes a transition from the upper (lower) to 
the lower (upper) level. Then 1° is given by 

(56) 

where lIl exc is the number of times the index of the up­
per level occurs among a" ... , aJ • AI exc is the number 
of excited atoms and N the number of photons in the ini­
tial state. 

"First corrections" to this theory can be obtained 
from the higher order theory defined by the choice l' 
-:J 1° 

I' :={(a
" 

... ,aJ,n): a j = 1.2 

forj=1. ... ,J;I1=O,1,2, ... }. (57) 

Each atom has now still "two levels ," but in addition to 
the above "ordinary Bohr transitions," each Aj is now 
allowed to make "virtual" transitions from a given lel'­
el to itself and virtual transitions from the upper (low­
er) to the lower (upper) level under absorption (eIJIis­
sion) ofa photon. One can show that the "lower" theory 1° 
is obtained from the higher by the use of the familiar 
rotating wave approximation. One can further show 
that the "first corrections" to the theory 1° amount to 
finite level shifts of the order of magnitude of Lamb 
shifts, and that these corrections have little influence 
upon those mechanisms which possibly build up the 
interesting many photon collective phenomena. For one 
atom the corresponding results are already published.28 

Our hope for reliable results in the lowest order 1° 
rests also upon the experience with numerous Weiss­
kopf-Wigner type theories practically all of which are 
of type 1°, and thus provides examples for the present 
existence theorem: 

The case J -= N -= 1, atom at rest, has been reanalyzed 
recently.21 It contains Kal1Ein's version29 of the Weiss­
kopf - Wigner theory of natural line width which agrees 
with experience. We shall show elsewhere that motion 
of the atoms, as introduced here, "shifts" the natural 
lines in agreement with the nonrelativistic Doppler 
theory. Therefore, reliable and realistic results can 
also be expected if a finite temperature of the active 
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atoms is introduced later by allowing the atoms to 
move, either like molecules in a gas, or like host at­
oms in a crystal subject to various lattice vibrations. 
We saw (Sec. 6) that this can be achieved without any 
additional mathematical expenses. 

The case J> 1,N: 1, atoms at rest, leads in a sec­
ondary approximation to photon inprisonment and super­
radiance effects. 30 One can show" that this theory, 
without the mentioned secondary approximation, con­
tains all time-of-flight effects of the photon which must 
be expected in a causal theory. So we can say that even 
the crudest, "lowest" order 1° of our approximations 
meets our demand 3 of Sec. 1 (at least with respect to 
the photon, cf, Ref. 17). Cases J» l,N» 1, atoms at 
rest6,12 lead to the formation of a directed beam of light 
capable of interference.7 All this, previously computed 
in "formal" theories and now put on a firm base, should 
not be accidental. 

Our existence theorem covers still many other cases 
of interest: few photons may impinge upon many ex­
cited atoms (all the cases Ai exc: J are possible here) 
and thus" stimulate" their emission process, many 
photons may impinge upon few atoms initially excited or 
not, etc, Much work remains to be done along these 
lines and with respect to more realistic (temperature 
etc.). yet still "microscopic" and causal approaches 
to laser activity and related phenomena. We hope that 
our existence theorem is of some help for this. 

We note finally that the transition to a description by 
density matrices makes no problems as the present 
"pure" theory is formulated on separable Hilbert 
spaces. 
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A multiple-scales space-time analysis of a randomly 
perturbed one-dimensional wave equational 
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An initial value problem for one-dimensional wave propagation is considered; the medium is assumed to be 
randomly perturbed as a function of both space and time. The stochastic perturbation theory of 
Papanicolaou and Keller [SIAM J. Appl. Math. 21, 287 (1971)] is applied directly in the space-time 
regime to derive transport equations for the first and second moments of the solution. These equations are 
solved in special cases. 

I. INTRODUCTION 

The problem of characterizing long-range acoustic 
transmission in the ocean is essentially that of under­
standing the dynamics of wave propagation in a medium 
subjected to small random spatial and temporal pertur­
bations. While the ocean problem is further complicated 
by a deterministic sound-speed profile (forming the 
SOF AR channel) and randomly irregular boundaries, 
understanding the effects of the medium itself repre­
sents a necessary prerequisite. 

In this paper, a model problem involving one-dimen­
sional wave propagation is considered. The properties 
of the medium are assumed to be randomly perturbed 
in both space and time. The stochastic perturbation the­
ory of Papanicolaou and Keller l is applied directly in 
space-time; transport equations for the first and sec­
ond moments of the solution emerge as necessary rela­
tions for the suppression of secular growth in the two 
characteristic directions of the unperturbed wave opera­
tor. 

Dealing with the problem directly in space-time per­
mits us to study the evolution of wavepackets in a spati­
ally and temporally fluctuating environment. Fourier 
transforms are used, but only after the formal stochas­
tic asymptotic analysis is complete. Only the infinite 
spatial domain is considered; however, the formalism 
can be developed as well for the semi-infinite spatial 
domain. It is hoped that subsequent analytis of this lat­
ter problem will provide insights into the nature of the 
boundary conditions that must accompany the limiting 
transport equations in cases (like the ocean) where 
boundaries exist. 

In Sec. II the asymptotic formalism is developed while 
equations for the first moment of the solution are de­
rived in Sec. III. In Sec. IV similar equations are de­
rived for the second moment (Le., the mutual coherence 
function). Sec. V deals with a specific example. 

a)Research supported by the Office of Naval Research under 
contract No. NOOOI4-76-C-0056. The research reported in 
this paper was initiated at the 1976 Applied Mathematics 
Summer Institute; this institute was supported by the Office 
of Naval Research under contract No. NOOOI4-75-C-0921. 
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II. DEVELOPMENT OF THE FORMALISM 

The initial value problem that we shall consider is the 
following: 

~U(x, t, w, El - :t (c -2(X, t, w, E) :t u(x, t, w, El) = 0, 

_00 < x < 00, t > ° (1) 

au 
u(x, 0, (Il, El = f(x), 8t (x, 0, w, E) = g(x), _00 < x < 00 , 

(2) 

where E is a small real parameter and w is an element 
of some underlying probability space. We assume that 

(3) 

i.e., the sum of a constant and a small randomly fluc­
tuating quantity. The random field I.J. is assumed to be 
a zero mean wide-sense stationary function of both 
space and time; consequently, we have 

(l.J.(x, t, (.tJ)= ° , 
(l.J.(x, t, w)l.J.(x ' , t', w) = R(x - x', t - t'), (4) 

_00 <x, x' <00, Os t, I' <00, 

where (.) denotes expectation, Le., integration with re­
spect to the underlying probability measure. We shall 
further assume that the random field I.J. is mixing (Ref. 
2) in the sense that as the space-time separation of 
(Xl' tl ) and (x2 , t2 ) tends to infinity, the random variables 
I.J. (x l' 110 w) and I.J. (x 2 , /2' w) become asymptotically inde­
pendent. 

We are ultimately interested in (u(x, t, (.tJ, E) and 
(u(x, I, W, E)U(X' , t', w, E) in the asymptotic limit where 
E - ° but where the space-time propagation paths (Le., 
distances along the characteristics) tend to infinity. 
Prior work (Refs. 1,2) has shown that since (I.J.) = 0, in­
teresting probabilistic effects will energe on E- 2 scales. 
Accordingly, we introduce the following slow spatial and 
temporal variables: 

(5) 

and view the solution u as a function of x, t, ~, T, E, w. The 
differential operators transform as follows: 
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and Eqs. (1) and (2) become 

~ a 2 a ~ -+E -at aT 

x [c-2(1 + E/-I.(x, t, w» t:t + E2 aaT) u(x, t, ~, T, w, E:)] 

=(t En£n\U = 0, 
n=O IJ 

U(x, 0, ~,o, w, E) =f(x) , 

~U(x, 0, ~, 0, ID, E) + E2 .:-U(x, 0, ~, 0, lv, E) = g(x) . 
at uT 

In particular: 

a2 a2 
£ -2 o=a;:z-c W' 

£2=2~a::~ _c-
2 

a::T) . 

The solution U is expanded in a power series in E, 

(6) 

(7) 

(8) 

(9) 

U(x, t, ~,T, w, E) = L; EnUn(X, t, ~,T, w). (10) 
"=0 

When (10) is substituted into (7), (8) and coefficients 
of the same power of E: are equated, we obtain the fol­
lowing hierarchy of problems: 

(iii) £ou2 = -£IUl -£2UO' u2(x, o,~, 0, w) = 0, 

a a 
a-tU2(x, 0, ~,o, w) = -a-tuo(x, 0, ~,o), (11) 

Stochastic effects in the actual solution gradually build 
up over long space- time propagation paths. Because of 
the assumed mixing property of the random field, the 
solution becomes essentially independent of the random 
field contained in any given space- time correlation cell. 
The stochastic perturbation formalism incorporates 
these features in the sense that computationally U o is a 
deterministic quantity and yet its dependence upon the 
slow variables ~ and T will ultimately be dictated by pro­
perties of the random field. 

The U o problem is solved by imposing the initial con­
ditions upon the D' Alembert general solution; we obtain 

uo(x, t,~, r) = Vl(~' T, X - ct)+ V2(~' T, x+ ct) (12) 
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with 

1 1 f x
-

c1 
VI (~, 0, X - ct) = '2f(x - ct) - 2c _~ g(A) dA, 

(13) 

Equations (13) will essentially provide the initial con­
ditions for the resulting ~T-transport equations. The 
equations themselves will emerge from the need to sup­
press secular growth in the expression for (u 2>· 

We now solve the u
1 

problem [cf. (lHO]' imposing the 
more stringent initial conditions u l (x, 0, ~, T, I.c.!) = (a/ 
at}u

I 
(x, 0, ~, T, w) = ° (T ~ 0). Using Duhamel's Method3 

we obtain 

uI(X,t,~,T,(.c.!) 

1 1 x+c( 1-5) a ~ a ~ --J J - J..L(A,S,W)aUo(A,S,~,T) dAdS, 
2c 0 X-C(t-5) as s 

(14) 

where U o is given by (12). In solving the u2 problem 
(lliii) we again impose the more stringent initial con­
ditions u2 (x, 0, ~,T) = 0, (a/at)u 2 (x, 0, ~, T) = -(a/aT)Uo(X, 0, 
~,r). Then, using superposition and Duhamel's Method, 
we obtain 

1 T X+C(I-5) [a ( a V =-'21 J a J..L(A,S,(.c.!)aUI(A,s,~,r,w) 
c 0 x-c(t-a) S S 

1 x·cl a 
--2 f -a-Uo(A, o,~, T)dA. 

C x-cl T 
(15) 

III. EQUATIONS FOR THE FIRST MOMENT 

In this section we shall derive equations of evolution 
for VI and 1)2 (as functions of ~ and T). Taking expected 
values of the terms in (10), we have 

(16) 

Recall that U o is a deterministic quantity. There­
fore, noting (14) and the fact that (J..L) = 0, a formal 
exchange of operations leads to (u l ) = 0. Therefore, 
(u) = Uo + E2(U2> + •••. An examination of the terms 
comprising (u 2> will reveal that some terms grow secul­
arly with t; suppression of this growth, which is re­
quired to make the correction E2 (U 2> truly small on U(l) 
~T scales, will also determine the equations of evolution 
for VI and 1)2 (Le., uo). 

We are basically interested in the evolution of wave­
packets in a statistically fluctuating environment. Thus 
we are tacitly assuming the initial data f and g to be 
such that VI(~' 0, x), i = 1, 2, are suitably smooth with 
(essentially) compact support in x. [As (13) indicates, 
VI(~'O,X), i=1,2, areactuallyindependentof~.] Inthe 
absence of random fluctuations, VI and 1)2 would propa­
gate undistorted along the characteristics. In the pre­
sence of a spatially and temporally fluctuating medium, 
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however, the packets will become distorted and could 
also conceivably grow in strength (having energy 
"pumped in" by the medium) as they evolve. We shall 
assume, however, that any such accrual of energy oc­
curs, on the average, at a sufficiently slow rate. Speci­
fically, we shall assume that 

1 x+ct 

limT! \1,;(~,T,X)\dX=O, i=1,2 
t-.. oo ..I. .. ct 

(17) 

uniformly in ~, T, x. We shall also assume that similar 
averages of various partial derivatives of 1\ and 1'2 
vanish in the limit as I - co. 

Consider (u), where u2 is given by (15). Noting (12) 
the latter portion can be expressed as 

1 f t jx+c(t-S) « a2 ~2) 
- e

2 atax -ia uo(X, s,~, T)dxds 
e a x-c(t-,) ~ T S 

1 <+ct 6 
--2 J ~uo(X, 0, ~, T)dX 

C x-ct v 

",l[-(~ -c~ \. (t T x-el) 
\8T 8~J'~'" 

+ ;, Ix::: t 

(:~ 1',(~, T, X) - :~ V2(~' T, X»)d>] . (18) 

In the context of our assumptions, the last term on the 
right-hand side of (IS) will not contribute to secular 
growth in t. The remainder of (15) is evaluated using 
the expression for It, given by (14). For brevity, let ai 

denote partial differentiation with respect to the ith ar­
gument. Then 

1 t1'+C(t-S) \ 8 (0 ~) 
--2 f a J.L(X,s,W)-a-1I1(X,S,~,T,.v) dXds 

c 0 X-c(t-s) S S 

" t lS!2/ ~2ctJo cet-a [c 2R( -a, c-la)(8~31'1 (~, T, 2a + x - ct) 

+ 8;31'2(~' T, a+ 1)+ x - cl)+ o~31't(~, T, a -1)+ x+ ct) 

+ 6;31'2(~' T, x+ el» - cOzR(-a, c-la)(-o31\(~, T, 2a 

+x-et)+831'2(~,T,a+l/+x-Ct) 

- 83 1'1 (~, T, a -1) + x + et) + 83 1'2 (~, T, X + cl» 

+ c2R(o, c-la) (a;:pl(~' T,X - ct) 

+ 8;3V2(~' T,l) - a + x - et) + 8;31\ (~, T, -a - "1 + x + ci) 

+ 8;3V2(~' T, -2a+ x+ ct» -c82R«f, c-la) 

x (-831\ (~, T, x - ct)+ 83V2(~' T, 1) - (f + x - ct) 

_a31\(~,T,_iJ-a+x+ct) 

+ 83V2(~' T, -2a+ x+ ct»]d1)da] . (19) 

Note that R(±a, c-la) corresponds to correlations along 
the two characteristic directions. We shall assume that 
both Rand 82R decrease rapidly as a function of a in the 
sense that 

i~ [R(±a, c-la)+ \ 8"R(±a, c- la) \ ]a"da<oo (20) 

for n = 0, 1. In view of assumptions (17) and similar as-
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sumptions for the partial derivatives, contributions to 
the secular term will arise from those portions of the 
integrand of (19) which are independent of 1). For bre­
vity of notation, let 

O'=x-cl, {3=x+ct. (21) 

C f2ct 
+ 4 R(a, c-la)8;3v2(~' T, -2a+ (3)da 

o 

1 r2Ct 

-"4)0 82R(a, c-la)83v2(~' T, -2a+ {3)da (22) 

must necessarily vanish as t - co if E2(U 2) is to be genu­
inely small on 0(1) ~T scales. Recall that we have tacit­
ly assumed initial data corresponding to wavepacket prop­
agation. In the absence of random fluctuations, an initial 
localized disturbance would split into forward and back­
ward propagating components; these components, in turn, 
would propagate undistorted along the characteristics. 

In the randomly perturbed case, we shall assume that 
the same gross qualitative features exist, i.e., that the 
support of 1\ is concentrated on a family of characteris­
tics x - el = Ci = const while the support of 1'2 remains 
concentrated on a family of characteristics x + ct = {3 

= const. Thus, while the packets may be distorted, 
smeared or otherwise affected by the random fluctua­
tions, we assume that these fluctuations have not totally 
obliterated the packets. 

Suppression of the secular term (22) as t - 00 reduces, 
therefore, to the suppression of secular growth in the 
two characteristic directions. Setting Ci '" const and let­
ting t - 00, we obtain the equation 

(:T +Ca3~)Vl(~,T,Ci) 
c J~ 8

2 

=4 0 R(-a, c-la)~Vl(~' T, 2a+ Ci)da 

82 .. 

+ ~ ~Vl(~' T, Ci) i R(a, c-la)da 

18" 
+ 4.--aal'l(~' T, Ci) fa 82R(a, c-1a)da. (23a) 
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The partial derivatives with respect to the third argu­
ment have been interpreted as partial derivatives with 
respect to a. Since f3= a + 2ct, taking the limit t - 00 

along a family of characteristics a'" const will suppress 
the v 2 terms in (22); we are assuming that v 2 and its 
various partial derivatives with respect to {3 vanish as 
{3 - co. [This added assumption is similar but more re­
strictive than the ones made in (17).] 

Setting {3 = const (so that a'" (3 - 2ct) and letting t - 00, 

we obtain the second equation, 

1 00 a 
-"4 i a2R(a, c-1a) aj31'2(;' T, -2a + (3)da . (23b) 

Together with Eq. (23), we have initial conditions (13), 
which can be recast as 

(24a) 

(24b) 

Both a and (3 range from -00 to +00 as x and t vary over 
the half -plane _00 < x < 00, t 2: 0. Introducing Fourier 
transforms greatly Simplifies problems (23) and (2~). 
Define 

V/(;,T,y)= (21T~1/2 f-: v/(~,T,z)e-/Y"dz, i=1,2. (25) 

Then, (23) and (24) transform into the following pair of 

first order Cauchy problems: 

(26) 

(27) 

where the initial data Via, 0, y), i = 1, 2, are obtained by 
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the Fourier transformation of Eq. (24). Note that the 
initial data is actually independent of ~; to make this 
point explicit, we shall set vi(~' 0, y)=<p/(Y), i= 1,2. 
Then, the solutions of (26) and (27) are 

(28) 

The desired functions Vl(~,T,a) and V2(~,T,f3) must then 
be determined by inverse Fourier transformation. 

We shall conclude this section by considering an ideal­
ized special case for which the computations are par­
ticularly simple. Let 

f(x) 
e-x2/2~2 df 
(21T)1I2t';' g(x) = - c dx (x). 

This choice of initial data corresponds to 

V l a, 0, a) = f(a), V2(~' 0, {3) = 0. 

(29) 

(30) 

Thus we consider the case of a right-propagating Gaus­
sian pulse; in the absence of random fluctuations, this 
pulse would propagate undistorted. For simplicity, as­
sume that the random field IJ. is independent of time and 
spatially delta-correlated, Le., 

R(x -x', t - t')=SoO(x -x'). (31) 

Then, the inverse Fourier transformation of expres­
sions (28) for this example leads to 

Therefore, 

IV. EQUATIONS FOR THE MUTUAL COHERENCE 
FUNCTION 

(32) 

(33) 

In this section we shall study the asymptotic behavior 
of (u(x 1 , tlO W, E)u(X2 , t2 , w, 10». We again introduce slow 
variables ~i' T i> i = 1,2, and develop the solution at each 
space-time point in an 10 power series [cf.(10)]. For 
brevity, let u(i) and u~j) denote u(xj1 ti' ~i> T/, w, E) and 
un(xi, ii' ~i' T i , w), respectively (where i= 1,2 and n=O, 1, 
2, "'). Then 

(34) 

The product ug )u~) is computationally a deterministic 
quantity. Noting (14) we obtain 

(35) 

Recall that we are essentially interested in the evolu­
tion of wavepackets in a random environment. Thus, the 
spatial and temporal offsets of interest, Le., 
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(36) 

will be 0(1), being limited basically by the support of 
the packet. Consequently, the case of interest will cor­
respond to 0«(2) offsets in the slow variables ~ and 7. 

Therefore, we shall be ultimately concerned (to leading 
order) with ~1 = ~2= ~ and 71 =72 =7. 

Note that the consideration of the mutual coherence 
function involves a "cross-coupling" term (u: 1 )u:2 )which 
will contribute to the ultimate equations of evolution. 
Let 

O!,=x,-cf" (3,=x,+cf o i=1,2, 

X=1(X1+X2 ), T=1(t1+ fJ. 
(37) 

Again, we must identify the terms in the (2 coefficient 
of (35) which grow secularly as T _00. Recall that the 
l't(~" 7" a,) terms have their support located near 
X - cT = const while the V2(~I' 7 I> (31) terms have their 
support in {3 located near X + cT = const. Therefore, as 
T - 00, two equations will emerge from the need to suppress 
secular growth along the two families of characteristics. 
Note that cross products of the form v1 (~I' 7 I, al)1!2(~j' 
7 j , (3j), i,j = 1,2, will tend to zero as T increases since 
the supports of the two terms forming the product be­
come essentially disjoint. 

Suppression of secular growth along the characteris­
tic family a = const necessitates the vanishing of 

Suppression of secular growth along the characteristic 
family {3 = const leads to the vanishing of 
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f '" ( 1J2 
+ ~ 0 R(a, c"la) \1'2(~1' 71> (31) 1J{32 V2(~2' 72, (32 - 2a) 

+ V2(~2' 7 2 , (32) :;~ V2(~1> 7 l' (31 - 2a») da 

1 '" . IJ 
-'4 fa IJzR(a, c"la) (:}2(~1> 71' (31) 1J{32 V2(~2' 7 2 , (32 - 2a) 

+ 1J2(~2' 7 2 , (32) 1J~1 V2(~1' 71, (31 - 2a») da 

c IJ IJ 
+ 4~ V2(~U71'{31) 1J{32 1'2(~2,72,{32) 

(39) 

Recall that we are interested in the case where ~1 = ~2 = ~ 
and 71 = 7 2= 7; define 

W1(~' 7, a 1, ( 2 ) =1.\(~, 7, a)V1(~' 7, ( 2 ), 

W2(~' 7, (31' (32) = 1J2(~' 7, {31)V2(~' 7, {32)' 

(40) 

Then, (38) and (39) can be recast as the following equa­
tions for w 1 and w2 : 

(41) 
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0
2 1\ 1 JOO 

+ ~11'2(~' T, {3p (32-2a~ da - '4 0 ozR(a, c·la) 

x (O~l 11'2(~' T, (31 - 2a, (32) + 0~2 W2(~' T, {31' (32 - 2a») da 

02 00 

+ ~ 0{31{32 W2(~' T, (31' (32) 1 .. R(a, C·
I

({31 - (32 - a»da. 

(42) 

The analysis of (41) and (42) is again greatly facilitated 
by the use of Fourier transforms; define 

Note that if the random field varies solely as a function 
of space or time, the equations for U\ and w2 will be 
first order linear constant coefficient equations. The 
general case, however, will not be so Simple; the 
"cross-product" terms [Le., the last terms in (41) and 
(42)] become convolution integrals in the transform do­
main. Let 

PI (z) =' J': R(a, c·l(a - z»da, 

P2(z) =' 1-: R(a, c·l(z - a»)da 

and let Pi' i = 1, 2, denote the corresponding Fourier 
transforms. Then, a Fourier transformation of (41) 
and (42) leads to 

~:T +C:~)1;\(~,T'YI'Y2) 
= -A6/1' y 2 )zt\ (~, T, Y l' Y2 ) - 4(2~)I72 J: PI (y) 

X(Y'-Y)(Y2+Y)W,(~,T,y, -y,y2+y)dy, 

A, (y" Y2) 

=' ~ (Yi faoo R( -a, c·'a) exp(i2yla)da 

+ Y; .~ .. R (_a, c·'a) exp(i2y2a)do' 

+ (Yi + Y~) fa 00 R(a, c·'a)da) 

(44) 

(45) 

and 

- ~ (yliOO 

azR(-a,c· ' a)exp(i2Y,a)da 

+ Yz.r,oo ozR (-a, c·'a) exp(i2Yza)da 

+ (Y l + Yz) ~oo ozR(a, c·'a)da) 

c 
= -Az(Yu Yz)wz(~, T, YI' Yz) - 4(2rr)l/Z 

x f: pz(Y)(Y, - Y)(Yz +Y)zV2(~' T, Yl - Y, Y2 + y)dy, 

+ y;foOO R(a, c·'a) exp( -i2Yza)da) 

+ ~ (Y l + Yz) 100 

azR(a, c·'a)da 

(46) 

We conclude this section by considering again the 
example discussed at the end of Sec. III; we consider a 
right-propagating Gaussian pulse in a random field that 
is time independent and spatially delta-correlated [cf. 
(29)-(31)]. In this case, (45) and (46) simplify to 

(47) 

Solving these equations for Wi' i = 1, 2, and taking in­
verse Fourier transforms lead to 

(48) 

Note that if x, = X 2 = el, = ctu the effect of the random field upon the mutual coherence function reduces to an attenuation 
due to the demoninator term. In general, the fluctuations in the solution are given by 
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V. A SPECIAL CASE 

If the random field fluctuates solely as a function of 
space or time, the functions iVi(~' T, ')II. ')12)' i = 1, 2, are 
readily determined as solutions of first-order linear 
equations. The mutual coherence function is then ob­
tained by inverse Fourier transformation. In this sec­
tion, we consider the case of a spatially fluctuating 
Gaussian random field; let 

(50) 

We again adopt initial data corresponding to a right­
propagating Gaussian pulse [cf. (29)]. Then, (45) and 

0.9 
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T 
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1984 
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0=2.0. 
0"= 1.0. 

CT = 0..5 

to. Cf 

(49) 

(51) 

For simplicity. we shall study the parametric depen­
denceofwl(~,T,O,O)(i.e., X 1 =x2 =ct l =ct2 )upona. Not­
ing (51) we have 

U\(~, T,O, 0) 

(52) 

and 

(u 2 (x, t, w, E) ix=et _ 2 ~2 , (t TOO) 
< 2( 0 ) 7f 1'[1 S, " . u 0, ,w, 40 

(53) 

The variation of this ratio as a function of CT (= 40
2ct) is 

shown in Fig. 1 for several values of a. The case a= 0 
corresponds to the delta-correlated case with So = 1. 

IG. C. Papanicolaou and J. B. Keller, SlAM J. Appl. Math. 21, 
287 (1971). 

2G. C. Papanicolaou and S. R. S. Varadhan, Commun. Pure 
Appl. Math. 26, 497 (1973). 

3F . John, Partial Differential Equations (Springer, New York, 
1975), 2nd ed, 
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The interaction function and lattice duals 
William Greenberg 

Department of Mathematics, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061 
(Received 29 April 1975) 

An interaction function is defined for lattice models in statistical mechanics. A correlation function 
expansion is derived, giving a direct proof of the duality relations for correlation functions. 

A general theory of duality transformations between 
pairs of classical spin-4 lattice models has been de­
veloped by Gruber and Merlinil and independently by 
Wegner.2 The theory of Gruber and Merlini is construc­
tive, providing explicitly a family of "dual" lattices and 
Hamiltonians for any given spin-4 system. These duals 
are exact, all requisite boundary terms being provided 
for, which is necessary in considerations of correla­
tion functions below criticality. 

We define in this article the interaction functions 
uH*(A,B) of lattice duals G and G*, and express them in 
terms of correlation functions. This gives an easy de­
rivation of the relationship between correlation functions 
of a lattice and its duals. The notation in this article, 
while somewhat different from Ref. 1 and some current 
usage, has the advantage, in addition to simplifying the 
derivations, of generalizing to higher spin lattices.3 

The reader is referred to Ref. 1 for details on the con­
struction of dual spin-4 lattices. 

1. DUAL LATTICES 

We suppose we are given a finite set A of lattice sites 
in a v-dimensional space, along with a Hamiltonian H 
defined on the configuration of A. It is convenient to 
take as the configuration space the group P2(A) of func­
tions from II. to Z2' the integers modulo 2, with group 
multiplication 

fg(lI.) =f(lI.) +g(lI.) mod2 . 

Considering H as a function H:P2 (1I.)-C, its Fourier de­
composition 

H(g)=6~Hau(g), gEP2 (1I.) 
aeG 

in terms of the elements of the character group G of G 
=P2 (1I.) is just the usual decomposition of H into a sum 
of products of spin matrices, since the characters of G 
are products of characters of Z2' Define the set of 
nonzero interactions 

Dual lattices are constructed with the set B. Defining 
Pz(B) as the group of functions from B to Z2' let p be the 
group homomorphism 

P:P2 (B)-G by p(j)= IT f(a) 
a-:::B(1 

and denote its kernel by Kp. Suppose X is any set which 
generates Kp as a group. Then X defines a dual of 11., 
with configuration space G* =P2 (X) and dual Hamiltonian 
H* defined as follows. Let 
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q:B -B*C G* by q(u):h- h(u) 

for uEB and hEXCP2 (B). q(a) is indeed a character on 
G*, and these q(u) are to be the nonzero interactions of 
the dual. The coefficients H.<a) are given by 

and 

o'f=B 
.<a' )=.<a) 

tanh,BHa, (1) 

In most models of physical interest, q is one-one, ex­
cept perhaps near the boundary. Thus 

1 
H.<a)=2f3 log tanh{3Ha 

except near the boundary, where (1) must be used. 

The partition functions Z({3H) =6g G exp(-f3H(g» of G 

and Z ((3H*) =6g ,_G exp(-f3H*(g» of its duals G* are re­
lated then by 

Z ((3H) = ~K(J» IT [sinh(-.BHa) cosh(-.BH a)]11 2Z ((3H*) 
acB 

where N(S) is the cardinality of S, and Ki is defined 
after Eq. (2). 

2. THE INTERACTION FUNCTION 

The correlation functions pea) of G are defined by 

p(a)=Z({3H)-1 6 exp(-i3H (g»a(g) , aEG 
g_G 

with H* replflcing H for the correlation functions p(u*) 
of G*, u* E G*. Note that pea) = ° if a is not a product of 
elements of B .1 

Define the characteristic projection t:G*-P2 (B*) by 

t(g*):u-H1-u(g*», uEB*. (2) 

The support of t(g*) is precisely those characters uEB* 
whose value at g* is -1. Now if the kernel and range of 
t are denoted, respectively, by Ki and Ri, then the map 
Q:Kp -P2 (B*) given by 

Q(j)(q(a»=f(u) , uEB, 

is a group isomorphism Kp-Ri. In particular, fEKp, 

feu) = p, aE S, if and only if Q(j) ERi, 
1o, uEY-S, 

Q(t)(q(a»= {1 , 
° , 

UES, 

aE Y -S, 
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and then 

II tanh(-J3Ha ) = II exp(2J3Ha) . 
ar1 (l) acQ(!>-l(l) 

Let the symbol 6 / (S, T) with S, TeB indicate that the 
summation [over fEP2(B), say] is to be restricted tof 
satisfying f(a) = 0 if a E S, f(a) = 1 if a E T. Then the in­
teraction function uH*(A, C) is given by 

forA,CeB*. 

I",R* 
t 

We wish to evaluate uH* in terms of the correlation 
functions of G*. Thus, suppose Yand Ware any disjoint 
subsets of B*. Writing Y for rra, a E Y, etc., obtain 
from (2): 

( II e-aHa)-1z *p(yU W) 
cr· B* 

II a'(g) = 6 II e-aHa(a(f)-1) 
g,_C* (J. B* a'· YUW 

=N(Ki) 6 II e2aHa II (-2f(a') + 1) 
ft R; (J'- ,-I (1) a'~. Y 

x II (2 -2f(a") -1). 
u"· W 

Now, expanding the product 

II (-2f(a') + 1)= 6 (_2)NIL) 
e" Y Lerl (1 )nY , 

and similarly with TI a"Ew(2 - 2f(a") -1), this becomes 

N(Ki) 6 uH*W,L)(_2)N(L)+NIM)(_1)NIW). 

LeY 
Mew 

Therefore, with a change in summation variable, 

-1 

( II e-aHa) Z* 6 (_l)N(Y)p(YU W) 
e B* YeG 

WeA 

=N(Ki) 6 6 uH*(M,L)2 N(L)+NIM) (_l)NIZ)+N(V) 
LeG ZeG-L 
MeA veA-M 

=2N(A)+N(G )N(Ki)uH*(A, C), 

which gives the desired expression. 

3. DUAL CORRELATION FUNCTIONS 

(3) 

The interaction functions can be used to derive direct­
ly the duality relations for correlation functions. Let 
Y e B. Then, using 

exp(-J3H e(g»= cosh(-J3Ha) + a(g) sinh(-J3H a) 

and the orthonormality of the characters, 

Zp(y)=N(G) II cosh(-{3Ha) 6 II 

1986 

IEP2(B) a'Er1(l) 
PI!>=Y 

J. Math. Phys., Vol. 18, No. 10, October 1977 

From the one-one correspondence between f E P 2 (8) 
with p(j)= Y andf' EKp with 

f':a_1f(a), if a,EY, 

I!(a) + 1 if a E Y , 

the expansion can be written as 

Z(N(G) II cosh(-J3H a»)-1 p(Y) 
aEB 

6 6(S,y-S) II tanh( -(3H a') 
ScY fEP2IB) 

p(f):Y 
e'Er1 (1) 

x II tanh(-{3Ha) 
aEY-S 

6 uH*(y* - S*, S*) II (tanh(-!3Ha»-l 
sc y 

s*n(Y-s )*=4> 

x II tanh(-!3He), 
eEY-S 

where it has been necessary to consider in the sum over 
S only sets se Y for which S* = {q(a) I a E S} and (Y - S)* 
are diSjoint. Thus, the interaction function expansion 
(3) gives the general relation between the correlation 
functions of G and the correlation functions of a dual G*, 

Pc(Y)= 6 Pc*Cf*)K(W, T*)' (4) 

T*cW* 

where 

sew 
s * n( w-s )*=4> 

for any we B such that W = Y. 

In the event that the duality map q is one-one, Eq. (4) 
simplifies to the path formula of Kadanoff and Ceva. 4 

Injectivity of q is equivalent to requiring that the ele­
ments of Kp separate the bonds a of B, and is satisfied, 
for example, by a hexagonal Ising lattice with periodic 
boundary conditions, or with an external field at the 
boundary, but is not satisfied by this lattice with open 
boundary conditions. 

In. Merlini and C. Gruber, J. Math. Phys. 13, 1814 (1972). 
2F . Wegner, J. Math. Phys. 12,2259 (1971). 
3W. Greenberg, Commun. Math. Phys. 29, 163 (1973). 
4L . P. Kadanoff and H. Ceva, Phys. Rev. B 3, 3918 (1971). 
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Extensions of Lie-graded algebras 
Hans Tilgner 

Mathematische Physik, Freie Universitdt Berlin, 1 Berlin 33, Germany 
(Received 28 February 1977) 

For Lie-graded algebras which are generalizations of Lie algebras with respect to a graduation, used 
recently in physics for the classification of elementary particles, and extension G of F by T, i.e., a short 
exact sequence T> -+G-+ > F can be described by a Lie-graded composition on T EB F, which is formulated 
in terms of a pair of mappings a :F-+derT and .6.:FXF-+T. The congruence of two extensions of F by T, 
i. e., the equivalence of the corresponding short exact sequences, is related to an equivalence relation on 
the set Z '(F,T) of such 2-cocycles (a,.6.) such that there exists a bijection between the set of congruence 
classes of extensions of F by T and the set H '(F,T) of classes in Z '(F,T). This generalizes Lie 
algebraical results which are also known for groups. Examples for two special cases are given: the 
semidirect sums with .6. trivial and the almost direct sums with a trivial. Both generalize the concepts of 
tangent and cotangent algebras of Lie algebras and their central extensions with R, the latter being used 
in the Bargmann theory of ray representations of these semidirect sums. 

1. INTRODUCTION 

An algebra A (over the ground field K) is called 
graded (more precisely Z2-graded or Z-graded, the 
only cases we are interested in) if (i) the vector space 
A is graded, i. e., there is a direct decomposition 
A=allAj (i in Zz or in Z), which in addition is (ii) com­
patible with the algebra composition, i. e. , 

AiAk C Ai+k (1) 

(Ref. 1, p. 163). An endomorphism M of the graded 
vector space V=al j Vi is called graded (of degree k) if 
for all Vi> 

MVicVI+k • (2) 

Let endkV be the vector space of graded endomor­
phisms of degree k. M in endkV and N in end IV implies 
MoN in endk+IV. Hence all endjV is a graded associative 
algebra. 

Examples of graded Lie algebras of type L_z al L_l 
alLoalL1 alL2 (rest {O}) are given by the Lie algebras of 
the infinitesimal automorphisms of the generalized 
Siegel domains, as was shown by Kaup, Matsushima, 
and Ochiai in Ref. 2. In Ref. 3 it was shown that the 
Lie algebras of infinitesimal conformal transformations 
and colineations in a pseudoorthogonal vector space, 
which are nonlinear polynomial transformations, admit 
a L_l al Lo al Ll (rest {O}) graduation. 

Now recently in particle physics another graded gen­
eralization of Lie algebras, involving anticommutators 
(symmetric algebra compositions), was introduced. A 
general mathematical discussion and references to the 
physical motivation is given by Corwin, Ne'eman, and 
Sternberg in Ref. 4, Also in a forthcoming paper 
Sternber and Wolf5 discuss a differential geometric 
application of this new structure in the theory of gener­
alized Siegel domains. To avoid confusion with the above 
notion of graded Lie algebras in the following this struc­
ture is called a "Lie-graded algebra." 

In Secs. 2 and 3 we generalize the Calabi-,6 
Hochschild-, 7,8 MacLane, 9 Mori, 10 Zassenhaus- ll struc­
ture theory of Lie algebra extensions to Lie-graded 
algebras, thus getting semidirect sums and a (fre­
quently in Bargmann's theory of ray representations 
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used) type of extensions (sometimes called "factor sets") 
which we call "almost direct" sums. The examples of 
the last two sections again are generalizations of Lie 
algebra (and Lie group) constructions. 

2. LIE-GRADED ALGEBRAS 

A Lie-graded algebra L with composition [, ], is a 
graded algebra such that for all x k in L k , Y l in Ll' Z in L 
L (arbitrary) 

(LGA.1) [xk , YIJ. = - (_l)kl[yp xkJ. (graded anlisymmetry), 

(LGA.2) ([Xk, YIJ., z1. = [xk' [y P Z ].1, - (- 1 )kl[yp lxk, Z ].1, 
(graded Jacobi identity). 

Introducing the left multiplication ad~(x)y = lx, y]., 
the graded Jacobi identity is equivalent to 

(LGA.3) ad'([xk , YI1.) = ad'(xk)ad'(YI) 

- (-l)kzad'(YI)ad'(xk)o 

Obviously in a Lie-graded algebra Lo and Leve. 
= ali LZi are Lie subalgebras and Leve. is a graded Lie 
algebra; trivially any Lie algebra L is a Lie-graded 
algebra by L = Lo (rest {O}L 

A graded associative algebra A is a Lie-graded alge­
bra with respect to the graded commutator [Xk, YI1. 
=XkYI- (_1)kZYzXk' especially those of type aliendjV for 
some graded vector space V. It will be written end'V 
in the following. (LGA. 3) shows that for a Lie-graded 
algebra L the set of left multiplications ad"(L) is a Lie­
graded subalgebra of end'L. Another class of examples 
of Lie-graded algebras is given by the set of graded 
derivations of a graded algebra A: D in end~ is a 
graded derivation (oj degree k) of A if for all Yl in AI, 
Z in A, 

D(yzz)= (DYI) + (-l)klyIDz. 

Given two graded derivations of degree k resp. l the 
graded commutator of them is a graded derivation of 
degree k + l. Hence the graded derivations der'A 
=allderjA of A is a Lie-graded subalgebra of end'A. 
If in addition the graded algebra is Lie-graded the 
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graded Jacobi identity 

(LGA.4) ad'(xk)lyp z l, = [ad'(xk)y p z 1. 

+ (- 1 )kl[yp ad'(xk)z l, 
shows that ad'(L) is a Lie-graded subalgebra (and even 
an ideal) of der'L. The elements of ad'(L) may be called 
inner derivations, other graded derivations outer. 

A morphism of Lie-graded algebras is a morphism 
of the algebra structure which in addition is compatible 
with the graduation (the same type of graduation being 
assumed on both algebras). A representation of a Lie­
graded algebra L is a morphism into end'V for some 
graded vector space V. From (LGA. 3) the epimorphism 
ad': L - ad·(L) is a representation, called the adjoint 
representation of L, the kernel of which is the center 
of L, i.e., the set of all x in L such that [x,y1.=O for 
all Y in L. L is called graded-commutative if it equals 
its center and obviously the center is a graded commuta­
tive ideal in L. (LGA. 3) shows that the restrictions to 
Li of the adjoint representation xa 1- ad'(xa) 1 Li for all i 
are representations of the Lie algebra La, the first one 
being the adjoint representation of La. More examples, 
especially those Lie-graded algebras of the Virasoro 
type, are given in Ref. 4. 

Given a graded vector space V and a bilinear form 
< , ) on V, a graded endomorphism <I> of degree i of 
V is called a graded derivation of (V, (, ») of degree i 
if for all xk in V k , z in V, 

(<I>(xk), z) + (_I)ik(Yk' <I>(z»=O. 

In this case (, ) is called invariant under <I>. Given 
two such graded derivations of (V, ( , » of degree k and 
1 respectively, their graded commutator is a graded 
derivation of (V, (, » of degree k + 1. Hence the graded 
derivations der'(V, ( , ») of (V, (, ») are a Lie-graded 
subalgebra of end'(V). Graded-symmetric, resp. 
graded-skew bilinear forms, i. e., bilinear forms with 
(xk'YI)=± (-I)kl(ypxk)' may be constructed on a finite­
dimensional graded vector space V by taking the matrix 
diag( ... ,Ii' ... ) as matrix of ( , ) in some basis, where 
Ii is a square dimVi-dimensional matrix with the de­
sired symmetry properties, the sums EB being now 
( , ) orthogonal. 

3. COCYCLE SUMS OF LIE-GRADED ALGEBRAS 

Given two Lie-graded algebras T and F (over the 
same field, with the same graduation, both composi­
tions being written [, l,), we consider a pair of 
mappings 

a :jl-o" 0: F-der·T 

A: (j,g)I-A(j,g), A:FXF-T 

(linear) 

(bilinear) 

which are graded, i.e., o(Fj)CderiT and A(Fj> Fk) 
CT i+k • Such a pair (a,A) is called a 2-cocycle ofF 
with values in T if for all tin T i, fin Fk, gin F r, h in 
F m, 

_[A(j,g), tl" 
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(C.3) A([f,gl.h) - (_l)(k+llmoh(A(j,g) 

= A(j, [g, hl,) - (_l)kIA(g, [f, hJ.) 

Obviously 0 is a morphism of Lie-graded algebras if 
and only if A maps into the center of T. Let Z2(F, T) 
be the set of such 2-cocycles. The motivation of these 
axioms is given by the following lemma. 

Lemma 1: If GI =Tittl F I , for every (0, A) in Z2(F, T) 
the composition [tttl j, u ttl gl, = [t, u 1. + o/u) - (- l)kl ag(t) 
+ t.{j, g) EB [I, gl. with t in Tk, 1l in T / , j in Fk , g in F/~ 
defines a Lie-graded algebra on ttliG i = G. 

Here the graded skew symmetry follows from (C. 1) 
and the graded Jacobi identity from (C.2) and (C.3). Lin­
ear continuation gives the same composition for now t 
in T

k
, u in Tp fin Fm , and gin F r' with the right-hand 

side elements in Tk+I,Tm+I,Tr+k,Tm+r' and Fm+r respec­
tively. Obviously oill) = [t, ul. = ad~(f)u. In the following 
we write G = Til + t.F and call this algebra the 2-cocycle 
sum of T and F with respect to (0, t.), shorter the (0, A)_ 
sum of T and F. Z2(F, T}, always contains the direct 2-
cocycle {j - 0, (j, g) - OJ, the corresponding sum being 
the direct sum of T and F. Given a morphism a: F 
- der'T, the 2-cocycle (a, (j, g) 1- 0) will be called a­
semidirect, the corresponding sum being the a -sem i­
direct sum. A 2-cocycle (jl- 0, A) will be called A_ 
almost-direct, the corresponding sum the A-almost­
direct sum. 

Lemma 2: (a) the linear mapping X: I - ttt! 0, X: T 
- Ta + t.F is an isomorphism onto an ideal of Ta + t. F , 

(b) the linear mapping z/J: tEBfl- f, lji: To + t.F - F is an 
epimorphism tlJhose kernel is the image of x. 

We omit the simple proof. A (a, A)-sum of Lie-graded 
algebras hence leads to a short exact sequence of Lie­
graded algebras 

T:>L To +t.F~> F, 

Conversely, following Mac Lane's construction (Ref. 
9, p. 124) it is straightforward to show that for any 
short exact sequence T ~ G..L.» F of Lie-graded alge­
bras and any section jJ.: F-G, i.e., any graded-linear 
mapping jJ. with ljioJ-l. trivial, there is a 2-cocycle (a,A) 
of F with values in T, which however does not depend 
on the chosen section jJ.. This correspondence between 
extensions and 2-cocycle sums makes the search of 
examples equivalent to that of Lie-graded algebras G 
having an ideal T. Some explicit examples will be given 
below, 

There is the well known split property of semidirect 
sums which states that the linear map w: fl- ° EB j, 
w: F- To +t.F is a (necessarily mono-) morphism (or 
{O}EBF a subalgebra) if and only if A vanishes, and the 
retract property of direct sums: 8: tEBf 1- t, 8: To +t.F 
- T is a (necessarily epi-) morphism if and only if 0 
and A vanish. 

Two 2-cocycle sums G=Ta +t.F and G=Ta+t.F of 
the same Lie-graded algebras T and F are said to be 
congruent if there is a (necessarily iso-) morphism 
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p: G-G such that pOX=X and z/!op=z/!, i. e., such that 
the corresponding short exact sequences are equivalent. 
Congruence is an equivalence relation on the set of 2-
cocycle sums of T and F. Let P(tk Efl fk) = A(tk Efl fk) 
Efl A '(tk Efl;;,>. Both A / S define graded-linear mappings 
and fk = z/!{tk Efl f k) = z/!(p(tk Efl fk» = A '(tk Efl fk); from this 
P(tk Efl fk) = p(X(tk» + A(O,f,,) Efl A '(O'/k) = tk + A(/k) Efl fk' where 
A : F - T is a graded-linear mapping. It is now straight­
forward to prove 

Lemma 3: (a) The isomorphism p: G- G has the form 
p: tk Efl f..}-+tk + AUk) Efl fk' with A: F - T graded-linear and 

afk (u , ) = afk (u , ) + [ACtk), u, ]., 

,:"Uk, f[l.) = ,:"Uk, f[,) + afk (A W,» - (- 1)kl a .. /AUk» 

+ [A{fk), AW,) l, - A([fk' f[,l,). 

(b) Conversely, given a graded-linear mapping A: F 
-T such that for two 2-cocycles (a, 6) and (0,':") of F 
with values in T the last two equations hold, the map­
ping p in (a) is an isomorphism and the corresponding 
short exact sequences are equivalent. 

The set of congruence classes is denoted by ext(F, T). 
It is not a Lie-graded algebra unless T is graded­
commutative. 

4. THE SECOND COHOMOLOGY OF A PAIR OF 
LlE·GRADED ALGEBRAS 

The preceding lemma suggests the following, which 
can be proven by thorough bookkeeping (the indices of 
Lemma 3 are dropped). 

Lemma 4: Given a graded-linear mapping A: F - T, 
(a, ,:,.) in Z2(F, T) implies (all., ,:,.11.) in Z2(F, T), where 

at : u~ a,(u) + [A(J) , ul., 

,:,.11. : {f, g) I- ,:,.U, f[) + af(AW» - (- 1)kl ag(A(J) 

+ [A(;), A (g) 1, - A([j, g J.). 

Two 2-cocycles (a, ,:,.) and (a, E) for which there is 
a graded-linear mapping A: F - T such that a = all. and 
6 =,:,.11. are called cohomolOf[ous. This defines an equi­
valence relation on Z2(F, T), the set of classes of which 
H2(F, T) is called the second cohomolOf[Y space of F 
with values in T. If T is graded- commutative, a re­
mains unchanged. From the above we get a result which 
was proven first by Zassenhaus for groups (Ref. 11, 
Sec. 15.1). 

Theorem: For any two Lie-graded algebras T and 
F we have: 

(a) Tc + <1F congruent Ta + <1F <=> (a, ,:,.) equivalent 
(a, 6), 

(b) r: [Ta + <1 F ]conlr [(a, ':")L is a bijection of ext(F, T) 
onto H2(F, T). 

2-cocycles which are equivalent to semidirect (resp. 
direct) ones are called 2-coboundaries (resp. direct 
2-coboundaries); the set of 2-coboundaries which does 
not necessarily contain only one class, is denoted by 
B2(F, T), the single class of direct 2-coboundaries by 
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B:(F, T). Given a graded-linear mapping A : F - T we 
write 

DaA: U, f[)~ af(A(g» - (- 1)kl ag(A(J) 

+ [A(J), A (g) 1. - A([j, gl.). (3) 

From (C. 2) and the preceding lemma one easily deduces 
that (all., DaA) is in z2(F, T) if and only if a : F - der±T 
is a morphism. Hence we get the following characteri­
zation of 2-coboundaries and direct 2-coboundaries: 

(.p, ,:,.) in B2(F, T) <=> there is a morphism a: F 
- der±T and a graded-linear map­
ping A such that all. =.p and DaA = ,:,., 

(a, ,:,.) in B:(F, T) <==> a : F - der'T is trivial and ,:,. 
= Da A for a suitable graded-linear 
mapping A: F - T. 

The following results are generalizations to B2(F, T), 
resp. B:(F, T), of well-known results for semidirect, 
resp. direct, 2-cocycles of Lie algebras: 

Lemma 5: Given a graded-linear mapping A: F - T, 
then: 

(a) the graded-linear mapping WA: FrTa +<1F, de­
fined by WA :fk ~A(fk)i:Bfk is a (mono-) morphism if 
and only if (a, ,:,.) is in B2(F, T), 

(b) the graded-linear mapping 811. : Ta + <1F - T, de­
fined by 811.: tkEflfkt-tk - AUk) is an (epi-) morphism if 
and only if (a, ,:,.) is in B:(F, T), and in this case its 
kernel is the image of wA , 

(c) the graded-linear mapping Ell. : Ta + <1F - Ta + <1 F , 
defined by Ell.: tk tB fk t-AUk) tB fk is an endomorphism 
if and only if (a, ,:,.) is in B2(F, T). 

The simple proof is left to the reader. 

Remark: (a) describes 2-coboundar." Slims as short 
exact split sequences, (b) describes direct 2-coboundary 
s/lms as short exact sequences admitting an inverse 
short exact sequence. For (c) first note that Ell. = WA C z/!; 
since z/! is onto, Ell. is a morphism if and only if WA is 
a morphism. It is easy to see, that WA resp. Ell. are 
exactly those graded-linear mappings having the split 
property i}Jo. = trivial. Moreover Ell. cEll. = WA 0 ifJo WA c i}J 

= WA 0 z/! = Ell., i. e., Ell. is idempotent. This generalizes 
the characterization of semidirect sums by projectors, 
i. e., idempotent endomorphisms, to 2-coboundary 
sums. The direct sums are characterized by those 
projectors, the complem{'Jztnrv projectors of which 
f[t---"f[- E(g), f[ in G, are projectors again. 

It is easy to verify that Z m EP 0 is in the center of Ta 
+ <1F if and only if zm is in the center of T and a vanishes. 
Hence the image of X is in the center of Ta + AF if and 
only if a vanishes and T is graded-commutative, i. e. , 
the almost direct sums with graded-commutative T 
correspond exactly to the central extensions of F by T. 

5. EXAMPLES OF SEMIDIRECT SUMS 

Let V=liiVi be a graded vector space, let F=i:BiF i 
be a Lie-graded algebra with the same graduation, and 
let a: F - end'V be a morphism of Lie-graded algebras. 
Then the vector space dJi(VitBF i) is a Lie-graded alge-

Hans Tilgner 1989 



                                                                                                                                    

bra with respect to the composition 

[x. wi., Yz 8:l gz1, = aU.)yz - (- 1)'z aWz )x. ffl [i., gz 1,. 
Obviously this Lie-graded algebra is the a-semidirect 

sum Va + F of the trivial algebra on V with F. It is 
called the the a-inhomogenization of F. If V has a basis 
and a is a matrix representation, then Va + F =: IF has 
the (1 + dimF)-dimensional representation 

x.mf.r-~') :} 
The adjoint representation ad' of a Lie-graded algebra 
F allows the construction of the ad'-semidirect sum of 
F with itself: TF:=Fad*+F=EB,(F,EBF,), where the 
first F means the trivial Lie-graded structure on F has 
the Lie-graded composition 

[x.ffli., yz EB gz ],=LJ., Yz1, - (- WZ[gz, x.1,EB [i., gz1,. 

TF is called the tangent algebra oi F. If F is an algebra 
of n x n matrices, then 

is a 2dimF-dimensional representation of TF in 
gl'(2n, K). 

These two representations (the seli-, resp. adjoint, 
representation) can be described as specializations of 
a more general construction which for simplicity is 
given only in matrix form: Let Kn,r be the vector space 
of rectangular matrices (of n rows and r columns, en­
tries in some ground field K), and let a :i. - aUk), 
resp. A:f. - AU.), be two representations of the Lie­
graded algebra F by nXn, resp. rX1', matrices. Then 

L\ { I- (aU.) Xk) . v n r { . F x.wJ. x. In .,.,,', J. In • 
o A(j.) 

defines a (n + 1'l-dimensional representation (with re­
spect to the graded commutator) of a Lie-graded alge­
bra on the (n1' + dimF)-dimensional graded vector space 
ti:l i(IG,r;£1 F i) the composition of which is defined by linear 
continuation of 

[Xk<±iik' 3'z tiJgzl, = afk(yZ) - (- 1)k/ Og/(X.)tiJ (Jk' gzl 

[the graduation on K",r being given by the graduation on 
end'(K"tB K') 1 where 

df.:YZr-aU.)yz-(-1)kIYzAU.), :Vz inK7", 

is a graded derivation of the trivial Lie-graded struc­
ture on K",r. Hence we can form the a-semidirect sum 
{{",r a+ F (with the above composition) with respect to 
the morphism 

i3 :i. r-i3f.' i3: F - der'K",T = end·K",r. 

Choosing l' = 1 and A the trivial representation, we 
get the inhomogenization of F, c hoos ing l' = n and A = a, 
we get the tangent algebra of a(F). 

Now, given ils in K~,r*, 1. e., a linear form iJ. s of 
K",T, the cont1'ag1'edient representation (J* of the rep­
resentation a: F - end'Kn,T is defined as usual by 
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[aj(lls)](Ym) = Ils(df(Ym)), for Ym in K::;T andiin F., in 
K",T*. From (afo dg )* = at 0 a1 the graded-linear mapping 

is a morphism of the opposite algebra FO~ of F into the 
trivial Lie-graded algebra K",r*. The a*-semidirect 
sum K;:* + FOP has the Lie-graded composition 

Identifying K",r* with K"", this semidirect sum has 
the (n + r)-dimensional representation 

Ilk ill i. I- (aU.)t 0 \ 

\ 0 AUk)1 

where aiz (vk) = AW
Z 
ltv. _ (- 1)kZ v.aWz)t. The cotangent 

algebra, 1. e., the contragredient of the tangent algebra, 
of Lie algebras is used in the quantization of Kostant 
and Souriau12 for the construction of symplectic orbits 
of Lie groups. 

Clearly in the above we can substitute for K",r, 
resp. K"", any graded subspace invariant under the ac­
tion of 0, resp. a*; in the adjoint case this means the 
choice of an ideal in F. 

6. EXAMPLES OF ALMOST DIRECT SUMS 

For the above two a-, resp. i3*-, semidirect sums we 
construct almost direct sums. 

Note that for almost direct sums, (C.2) implies that 
the image of t:.. is in the center of T and (C. 3) simplifies 
to 

(C. 3 ') t:..(Lt., R"z 1 .. hm ) = t:..(f., [R'z, h m 1.) 
- (- 1)kZ t:..(gz, Uk' hml,), 

and the Lie-graded composition on T + 6.F to 

[tk cB i k, liz d; gzl. = [tk, Ilzl. + C.Uk, gz) d:l [ik' gzl •. 

Now let ( , ) be a graded-skew bilinear form on K",r 
and let Y; be in the ith copy of T = ... dl KED Kd:l .. '. If 
af is in der'(K",r, <, ») for alli. in F., then the gradua­

k 
tion preserving bilinear mapping 

t:..: (xk cf;i., yz ti:l gz)1-- YhZ(x., :I'z) 

is an almost direct 2-cocycle of K",r a+ F with values in 
T and we get the Lie-graded composition 

[ak.T! xk +'i., (31 ti -"z tt! gz1. 

= Yk+Z (X., \'1 ) t±l a fk (y z) - (- 1 )kZ dgz (xk) <£ Uk' gl 1. 
on T + l>(Kn,r a+ F). The same type of almost direct 2-
cocycle of K;;,;." + FOP with values in this T can be de­
fined under the corresponding assumptions. 

Dropping in these two kinds of examples F completely 
we get a Lie-graded generalization of the Heisenberg 
Lie algebra, with the Y-dependent Lie-graded 
composition 

(rest zero or from (LGA. 1) 1. 
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Remark: Bargmann (see Ref. 13 for a Lie group the­
oretical treatment) has used almost direct sums of R 
and a given Lie algebra F for the classification of 
(skew-adjoint) ray representations of F. Souriau12 gives 
applications in symplectic differential geometry of the 
second cohomology of some physical motivated Lie alge­
bras with values in its dual, using the co-adjoint 
representation. 

The above examples, specialized to Lie algebras, 
contain some Lie algebras which were used for the 
solution of some Schr&linger differential equations in 
quantum mechanics. Specializing in the inhomogeniza­
tion of F, resp. FO., the pair (V, < , ») to a 2n-dimen­
sional symplectic vector space and F to one of the real 
one-dimensional algebras of matrices of the form (/ is 

a dT~1 ~y ~:a_ ":::.rl~ ~:"~:~;T T In R, 

or more general any matrix in the symplectic matrix 
Lie algebra of (V, < , »), the (2n + l)-dimensional Lie 
algebras Va + F become solvable spectrum-generating 
Lie algebras for the particle (i. e., the Galilei algebra 
with the rotations omitted), the harmonic oscillator, 
the anharmonic oscillator, or more general any dyna­
mical system with a bilinear Hamiltonian in the posi-
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tions and momentas. The classification of their skew­
adjoint ray representations is equivalent to the solution 
of the corresponding Schrodinger equations. Due to the 
Bargmann theory this classification is equivalent to the 
classification of the skew-adjoint (ordinary) representa­
tions of the (, )-almost-direct sums of R and Va + F, 
which such are the (2n + 2)-dimensional quantum­
mechanical versionsof these Lie algebras. A general 
treatment of the second cohomology of non-Abelian 
Lie algebras was given by Cattaneo in Ref. 14. 
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Invariant integrals in nonmetric supersymmetry spaces 
L. Kannenberg 

Physics Department, University of Lowell, Lowell, Massachusetts 01854 
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Definitions are given for the exterior product, infinitesimal extension of a cell, Levi-Civita symbol, and 
generalized Kronecker delta in order to identify invariant integrals in spaces with both Fermi and Bose 
dimensions. Stokes' and Green's theorems for such spaces are constructed as a preliminary to defining a 
generalized action principle in supersymmetry spaces not necessarily equipped with a metric or a 
connection. 

Theories of Fermi-Bose super symmetry provide a 
promising framework for a unified description of 
particle interactions. 1,2,3 In particular, the gauge super­
symmetry scheme of ArnowiU and Nath4 ,5 proposes a 
unification of gravitational, weak and electromagnetic 
interactions through the introduction of arbitrary trans­
formations on N "super coordinates" ZA which obey the 
generalized commutation relations6 

Arnowitt and Nath require that the space identified by 
these coordinates possess an invariant interval or 
supermetric 

(1) 

ds
2 

=dzA(AgB) dzB (2) 

and so construct a field theory remarkable in its formal 
similarity to classical general relativity. In addition, 
Arnowitt, Nath, and Zumin07 have identified the super­
symmetry form for the determinant of the metric (AgB) 

and thus find an action principle based on invariant 
integrals in this metric supersymmetry space. 

Friedman and Srivastava8 and Wess and Zumin09 use 
the concept of super coordinates to extend the "purely 
affine" unified field theory of SchrodingertO to a natural 
non metric gauge supersymmetry formalism. The pres­
ent paper addresses the problem of constructing invar­
iant supersymmetry space integrals in the nonmetric 
formalism and the generalization of Stokes' theorem 
for spaces with both Fermi and Bose dimensions, not 
necessarily equipped with either a metric or a connec­
tion. This theorem then allows development of an action 
principle for most gauge supersymmetry theories, in­
cluding the Arnowitt-Nath formalism, the Friedman­
Srivastava "purely affine" theory, and supersymmetry 
extensions of theories admitting torsion such as that of 
Hehl. ll ,1 2 

The first requisite for constructing an invariant inte­
gral is the definition for the extension of an infinitesimal 
cell in the space. This flows directly from the form 
for the exterior product of vectors, conveniently stated 
as follows: If u A and VA are two contravariant vectors, 
the components of their exterior product are 

(3) 

This structure possesses the two obvious symmetries 

(U 1\ V)AB = - (- 1 )ab(u 1\ V)BA (4) 

and 

(5) 
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so that the "diagonal elements" (uAv)XX (no sum on X) 
vanish identically, and the (u A V)AB transform as com­
ponents of a contravariant second rank tensor; that is, 
if the vector transformation law reads 

(6) 

then the transformation law for the exterior product is 

(U 1\ v)A 'B' = RA ' C (u A V )CD (D L B'). (7) 

The rule extends immediately to the exterior product of 
a sequence of vectors u(Q/' a=1,2, ... ,M, as a sum 
of terms of the form U(I/'U (2)A2" 'll(M)AM , which 
possesses the symmetries 

(U(l);\ ... A UIM),,·AB ••• = - (- 1 )ab(u(l) 1\ ... 1\ U(M )). ,.BA." 

on any adjacent pair of indic es, and 

( •. . 1\ ll(Oi/IUla/\" . )A\, .. A M = - ( .. 'AUla/'U IQ ) 

1\ ' •• )Al' .. A M 

on any adjacent pair of vectors, This structure then 
transforms as a tensor of rank iV1, as indicated, 

(8) 

(9) 

The form for the extension of an infinitesimal cell is 
now clear: consider M'" N linearly independent infinitesi­
mal excursions from a given point, identifying the 
elements of the Q!th such excursion as d(Q)ZA; the exten­
sion of an M -cell at that point is then simply the exterior 
product of these excursions, 

(10) 

The order in which the excursions appear in this exterior 
product fixes the orientation of the cell. The extension 
transforms as a contravariant tensor of rank M, and 
thus its inner product with a covariant tensor of rank 
M is a scalar, allowing immediately the construction of 
invariant integrals, e. g. , 

(11) 

where the parity factor is given as 

(12) 

Moreover if T A is a covariant tensor, then, even 
, .A 1-·· M-l . 

though its partial derivatives TA A A fall to trans-
1··· M-l' M 

form as tensor components, their inner product with 
dTAl···AM is a scalar, and hence a second category of 
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invariant integral is 

J-;J(-I)4>N<a,a'T dTAl···AM. 
A 1,.·AM .. l'A M 

(13) 

Stokes' theorem relates an integral of the second type 
over a closed oriented region in a subspace VII to an 
integral of the first type over the boundary of the region. 

In constructing Stokes' theorem it is useful to have 
super symmetry space definitions for the Levi-Civita 
symbol and the generalized Kronecker deltas. The 
natural choice for the Levi-Civita symbol is that struc­
ture EA ... A with Grassmann parity (-1)/, fbeing the 
numbef of fermi dimensions of the space, with E12 ... N= 

+ 1 and possessing the symmetry 

(14) 

for any adjacent pair of indices. In addition the Levi­
Civita symbol must vanish if any two of its indices are 
the same, a condition not forced by Eq. (14) for Fermi 
indices. The superscripted Levi-Civita symbol has the 
same parity and symmetry structure as the subscripted 
symbol, and it is convenient to complete the algebraic 
properties of both with the rule 

(15) 

The generalized Kronecker N -delta then follows as a 
combination of Levi-Civita symbols, 

(_I)/<I-l,/2D Bl"· B n-;(_1)4>n(b,a'E EB l··· B N. (16) 
Al .. •A n A 1 .. ·A n 

This structure exhibits the symmetries 

D ... B 1 B2"'=_(_I)b1b2+ a2(bl+b2'D ... B2 B 1 .. • (17) 
... Al A2'" • .. Al A2'" 

and 

and equals unity when Aj =i =Bi , i = 1,2, ... , N. From 
this follows the definition of the generalized M -delta, 

(19) 

which has the same symmetries as does the N -delta. 

The general reduction theorem relating generalized 
Kronecker deltas is the familiar form 

(20) 

It is possible to display DA B l'
A
" BM in a form in which its 

1'" M 
leading term is the structure lj A l~.I::",·B II formed of pro-
ducts of the ordinary Kronecker delra lj A B with the sym­
metries of DAl~.~A~BM. Additional terms must of course 
be appended since o ... xx~!~J"· (no sum on X) fails to 
vanish by itself if X is a Fermi index. 

Observe that if TA l
oo

•
A M is a tensor with the 

symmetries of an exterior product, then the identity 

(21) 

obtains, where PT -;L:r=1 ai is the Grassmann parity of 
TA l· .. A M • From this identity flows the natural definition 
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X T
A

l· .. AIIEA 1 ... A IIB l' .. BN-M' 

The inversion of this relation is just 

TA l' "AM = (N -M)l (_I)/<I-l)/2+4>N_M(b,b)+PTi T 

x* T eA 1• .. A MB l'"BN_M 
Bl· .. B N-M ' 

(22) 

(23) 

PT -;L:i=/-M b
i 

being the Grassmann parity of the dual. 
The N -delta satisfies the product rule 

(_I)4>N(b+c,a+c,+t:ciD Cl'"CND Bl ... BN=NID Bl."B N (24) 
Al .. ·AN Cl'"CN Al,,·AN 

as may be checked directly from its definition in terms 
of the Levi-Civita symbols. Precisely similar relations 
apply for the M-deltas. Furthermore the related 
structure 

( _1)f(I-l)/2DA 1 .. ·AN -; (_1)4>N(b,a'eA 1 ... A NE (25) 
Bl' .. BN B 1'''BN 

satisfies 

(_1)4>N(b+c,a+c'nAl, .. A N Dc 1···eN =NlnA 1• .. A lI (26) 
C1,,,CN B 1,,·BN B 1" BN 

which may be verified by observing that it may be 
expressed in terms of the N-delta according to 

(_I)<I>N(a.b)·'nA1 .. ·A", =(-l)4>N(b,a)D A 1,,·AN • (27) 
B 1""BN B 1"'BN 

Now consider the mixed tensor TAB and define its 2-
product by 

2' T Bl B2= (_1)4>2(b+c,4+C'+4>2(b+d,c+d)+t:Ci+t:d i 
• Al A2 -

xD C1 C2T VIT v 2D Bl B2 (28) 
Al A2 C 1 C2 VI V 2 • 

This structure is a tensor of type indicated with exactly 
the symmetries of the 2-delta. Furthermore, if TAB 

is the "matrix product" of two other tensors VAB and 
VA B, that is if 

TAB = (-1)C V
A 

CVcB, (29) 

then it follows at once that their 2 -products are related 
according to 

21 T Bl B2= (_1)4>2(b+c,4+C,+t:CiV C 1 C2V Bl B 2 • (30) 
Al A2 Al A2 C 1 C 2 

More generally, the M -product of the tensor TAB is 
defined by 

M! T B 1, .. BM = (- 1)4> M(b+c,a'c'+4>M(b+d ,cod ,+t:Ci+t:di 
Al .. • A M 

xD Cl,,, CMT VI ••• T VMD Bl'''BM (31) 
A 1,,·AM Cl C" D 1".D M 

which has the symmetries of the M-delta. If TAB is the 
matrix product of VA Band VA

B in the sense of Eq. (29), 
then their M -products are related according to the rule 

M! T Bl .. • B" = (_1)4>M<b+c.4+C)+t:CiV Cl'"CMV B 1• .. B M 
Al'''AM A\, .. A M C1",CM 

(32) 

as may be checked directly. Using the symmetry prop­
erties it is clear that the N -product of TAB has a single 
independent element, which is convenient to take as 

T= T 12 ... N 
- 12 .. ,N 

and on using the product rule for N -products of TAB, 

UAB, and VAB, one finds directly 

(33) 

T= UV. (34) 

An alternative form for the N-product which is very 
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useful is just 

T B, ••• BN=TD BI ... BN Al" •• A N Al' .. A N • (35) 

The definition of M-products of rank two tensors of other 
type, e. g., UAB or (AgB)' follows the pattern indicated 
above. It is also convenient to define M-products of the 
trans for mation matrix RA B' in the same way, and to 
write 

(36) 

A consequence of these definitions is that if (AgB) is a 
covariant tensor of type indicated, with transformation 
law 

then the quantity 

g'= (12 ... Ng,2 ... N) 

transforms according to 

g'=LgR. 

From the relation 

(A,LB)= (_l)a+abRB A' 

(37) 

(38) 

(39) 

(40) 

follows at once L =R, so than an alternative form for 
the transformation law of g is 

(E(g')g,)1/2 = E(R)R(E(g)g)'/2, 

E(X) being the indicatrix of X. It is also clearly a 
straightforward task to use the relation 

RA' cRc B' = cA' B' 

to discover that 

(41 ) 

(42) 

(43) 

By writing the N-product of RA B' in the form 

RDAI":AN , = (_l)"N(b+c,a+clDA""AN RC, .•• RCN • 
B, ... BN C,,,,CN Bi BN' 

(44) 

it is possible to read the transformation law of the Levi­
Civita symbol off directly as 

E, '= (_1)"N 1a+b, blR-IE RB I , ••• RBN, (45) 
A1 .. ,AN BI· .. BN Al AN 

which is reasonable to identify as the transformation 
law of a right covariant tensor density of rank Nand 
weight - 1, provided R is defined as the determinant of 
the transformation matrix. This definition is consistent 
with the general property of N -products exhibited in Eq. 
(34).'3 

The above groundwork prepares the way for Stokes' 
theorem. Let TAI ... AN_I be a tensor with the symmetries 
and transformation properties of the exterior product 
of N - 1 right covariant vectors, defined throughout a 
finite region V of the space identified by the supersym­
metry coordinates ZA: Then 

J. (_l)"N(a,alT drAI· .. AN 
V Al···AN_I,AN 

= J' (_l)"N_I(a, al T drAl .. ·AN-I. (46) 
S AI"'AN_1 

S is the boundary surface to V, and the orientations of 
the N -cell and the (N - I)-cell are related in the usual 
way; that is, if their duals are respectively *dT and 
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*dTB, and if nB is an infinitesimal vector directed out of 
V, then the inner product (- 1 )bnB* dT B has the same sign 
as does *dT. The proof of this result now proceeds pre­
Cisely in accord with its analog in spaces without Fermi 
dimensions, 14 the sole new feature being the additional 
accounting necessary from the appearance of the parity 
factors. Thus in the coordinates chosen, select cells 
in V with edges along the coordinate lines, taken in 
order with the Bose coordinates first, from which is 
established immediately the usual relation 

(47) 

The integral over V appears as a sum of terms of the 
form 

J B = J)(-1)"N-I 1a,al+PT 11+blEAI ... AN-IB 

X T AI ••• AN_I)' Bdz'dz2 • •• dz N, 

no sum on B, and clearly Ai oF B. One has 

(48) 

dz ' ·• 'dzN = (_1)k(f-kl8IkldzBdzB+I .. ·dzNdz ' ·· 'dZB- I, 

(49) 

where k '= B + f - N - 1, and hence the integral J B can be 
taken along tubes made up of parametric lines of ZB. 
Assuming for the moment that V is a convex region, the 
integral reduces to 

J = (J' - J' )(- l)"N-I(a,alT 
B (2l (I) Al ... AN_1 

X (_ 1 )k(f-kl8(kl~ ""A N-IBdz B+1 ••• dzB-" (50) 

where the limits indicated are the points at which the 
parametric lines of ZB cut the boundary S of V, with 
ZB (2) > ZB (1). Appropriate outwardly -directed normals 
to V at (1) and (2) are - dzB and dzB respectively, 
whence one discovers directly that the orientation of the 
cell 

dTAI· .. AN-I= (_1)k(f-kl8(klEAI·"AN-IBdzB+I . .. dZB- I (51) 

at (2) is correct, and Similarly for the corresponding 
cell at (1). The sum of all integrals J B thus corresponds 
precisely to the integral over 5 indicated. To complete 
this construction, observe that a nonconvex region may 
be constructed by conjoining appropriate convex regions 
in the usual way. The general case of a tensor T. • , 

~I"'~M-I 

M '" N, defined over a finite oriented subspace V M now 
appears straightforwardly as 

J .. (_l)"MCa,alT dTA, ... AM 
vM A, ... AM_',A M 

(52) 

with the usual relation between the orientation of cells 
in V M and on its boundary S. The proof proceeds just 
as before, and may be facilitated by introducing M 
parameters yk 

(53) 

as intrinsic coordinates for V
M

, and expressing the cells 
in terms of these intrinsic coordinates. 

Green's theorem may be regarded as a restatement of 
Stokes' theorem in terms of duals, and appears as 

(54) 
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In spaces equipped with a connection, defined through 

VA;B= VA,B+ VC~rAB)' (55) 

it is useful to observe that requiring the covariant 
derivative of the Levi-Civita symbol to vanish produces 
the following expression for the covariant derivative 
of a relative scalar P of weight + 1: 

(56) 

If in addition the connection exhibits the affine symmetry 

(57) 

then the covariant divergence of a relative vector AA of 
weight + 1 is identical to its ordinary divergence, 

(58) 

Finally, in a space with a metric (AgB) as well as a 
connection one may associate to the dual * TA1"' AM of 
a tensor an oriented tensor T*A A via 

1'" M 

(59) 

The mathematical machinery exhibited here now 
permits construction of fairly general action prinCiple 
formulations for gauge supersymmetry theories. Some 
of the properties of such formulations will be examined 
in a later paper. 
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The equivalence of a one-dimensional turbulence problem 
and the one-dimensional Coulomb gas 
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(Received 29 April 1977) 

We show that Burger's equation subject to initial conditions which are governed by a canonical (Gaussian) 
distribution in the kinetic energy can be related to the properties of a one-dimensional Coulomb gas in a 
certain limit. Some consequences of this are worked out. 

Burger's equation is one of the simplest equations that 
can be solved exactly which exhibits intermittency. For 
this reason it has received a lot of interest. The statis­
tical properties of this equation have been investigated 
by Burger l as well as others. It is now generally 
believed that the basic physics is well understood, but 
as yet no quantitative scheme has been developed by 
which one can calculate these statistical properties 
systematically. In this note we wish to point out that, 
using a recent m _ 0 trick exploited by various workers 
in the study of polymers, 2 in critical behavior in the 
presence of impurities,3 and in spin glass problems,4 
the statistical problem of Burger's equation can be re­
lated to a one-dimensional Coulomb gas, Various con­
sequences of this analogy are also discussed. 

The problem that we are addressing ourselves to can 
be precisely stated as follows: Burger's equation is 
given by 

V
t 
+ VV

x
= vV

xx
' (1) 

Suppose the "velocity" Vex,!) at time t=O has a canon­
ical distribution in the total energy, i. e. , 

What are the average values of quantities such as the 
velocity autocorrelation function < V(O, 0) V(x, t), 
especially in the limit as t - 00? Here the angular 
bracket denotes the statistical average. 

We have been able to show that 

< V(O, 0) V(x, t)) = a2lim Q 1 (x, m), 
m- O 

where 

Q1(X, m) = fir d~i b(x - ~1) exp[ - /3H(m, {W]· 
i =1 

- {3H(m, ~) looks just like the Hamiltonian of a one­
dimensional Coulomb gas (of one species) with m 
particles in an external field. It is given by 

- f3H = - .i3H oxt - f3H Int' 

where 

- f3Hoxt = - b~(X - ~iJ2 - 2ai~ I ~i I 

a)Supported by NSF grants. 

(2) 

(3) 

(4) 

(5) 

(6) 
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and 
m 

- ;3H1nt =a61 ~i - ~J I 
,"1 

(7) 

with 

a=<f/32v\ b=(4v!)-1. (8) 

The derivation of formula (3) is given in the Appendix. 
Let us now discuss some of the consequences: First of 
all, note that even though there has been some concern 
over the validity of the m - 0 trick in some other 
applications,5 this difficulty does not apply here. In that 
case the worry is about whether one can interchange the 
m - 0 limit and the thermodynamic limit as the number 
of particles goes to infinity. In the present case one is 
interested in the limit as the number of particles goes to 
zero! Because of this limit one would expect the mean 
field approximation to be a good one. It is with this 
approximation that we shall discuss the consequences of 
our problem, 

To get a feeling for what is going on, we have plotted 
the external potential in the limit of large and small 
time in Fig. 1. This figure indicates that the particles 
are localized around ~ '" x at small time and have 
"diffused" to the origin as time increases. As we see 
formula (3), < V(O,O) V(x,tl) is essentially proportional 
to the "ensemble average" of x - ~. It must therefo: ... e 

He.t 
/ 

Small T b. 2 

--x 

,..---He.t 

Lorge T 20. 

FIG. 1. A figure showing H .. t(~) as a function of ~ for long; 
and short times. 

Copyright © 1977 American I nstitute of Physics 1996 



                                                                                                                                    

go from zero to a finite value as t - 00 starting from 
zero. 

For t = 0, it is obvious that ( U(O, 0) U(X, 0» = ° for 
xi' 0. We shall now evaluate this number in the f - 00 

limit in the mean field approximation. We have, using 
(3) , 

(U(O,O)U(x,t»=o2limfli d~j b(~l-X) 
m ~ 0 t=O 

xexp[-b0(x - ~i)2 - 2a~1 ~j 1 +~I ~j - (0 I]. (9) 

As we have pointed out previously, as t - 00, we expect 
( 0 = 0. This can also be shown to be actually a self­
consistent solution. In this case, one finds straightfor­
wardly from the above relation that 

( U(O, O)U(x, f» = o2x/ 4vf. (10) 

Note that (10) does not have the form of [(x/Vi), but 
is actually dimensionally correct. It is due to the fact 
the our initial distribution of U corresponds to not just 
one but a distribution of Reynolds number. We have no 
simple explanation of this simple-looking result 
unfortunately. 

We also wish to point out that with this technique other 
types of initial distribution can also be treated. For 
example, a distribution of the form P(u)cxexp(-'2,k 2u;/ 
02) (similar to one recently studied by Forster et al. 6) 
leads to a gas of particles with 15 -function interactions. 

APPENDIX 

By uSing the Cole-Hope transformation, the solution 
to Burger's equation is given by 

d r" U(x,t)= -2v dx lry _ d~ 

[ 
1 (x -0

2 It )] xexp - 2v 2t + 0 U(~lO)d~1 . (AI) 

We have written the solution of this form to bring out its 
similarity to a -::orresponding relation in the thermo­
dynamics of amorphous systems. We are interested in 
the following quantity: 

1997 

( U(O, O)U(x, tl) = f d{U(x, O)}p{U(x, D)} U(O, O)U(x, f). 

(A2) 
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Making use of the formula lnx= limm_o[(xm -l)/m], we 
have 

(U(O,O)U(x,tl) = -2vlim.!. id{U{x,O)}U(O,O)dd 
moO mJ u x 

x{exp[- ;v(~(x ;t~j)2 +~f:iU(~1 ,O)d~)] -I} 
xp{U(x,O)}. (A3) 

We now express U(x,O) as a Fourier transform 

U(x 0)=6U(k)e ikX ..!..' (A4) 
'k L 

On substituting (A4), Eq. (A3) becomes 

(U(O, O)U(x, tl) = - 2v lim (0 dUk ~L (..!..6 Uk) .!!... moo') lk Yi.- L k' dx 

x{exp[16U(kl(t exp(i~ik) -1) 
L k i=1 2lkv 

_..!..6~+t(X-~i)2J}. (A5) 
L k a2 i=1 tv 

The statistical averaging can now be easily done, and we 
obtain formula (3). 
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Neutron transport in plane geometry with general 
anisotropic, energy-dependent scattering 
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York 10012 
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We consider the neutron transport equation in plane geometry with a general energy-dependent anisotropic 
scattering kernel. We construct the solution of the subcritical half-space albedo problem as a contour 
integral around the positive half of the spectrum of a reduced transport operator K. The integrand 
involves the boundary data and two operators which provide the Wiener-Hopf factorization of a third 
operator contained in (AI-K)-'. Bounds are obtained for the location of the spectrum of K in the 
complex plane. We also obtain representations of the solutions of the Milne problem and of the full-space 
and half-space problems with sources. Various simplifications of the general theory, which occur for 
particular scattering models, are discussed as an illustration of the results. 

1. INTRODUCTION 

We begin by determining the solution of the following 
half-space problem for the neutron transport equation 

a<p • 
IJ.-a (x, IJ., E) +at(E)<p(x, IJ., E) 

x 

(Em f 1 a(fJ', E' - fJ, E)<P(x, fJ', E') dfJ' dE' 
J 0 -1 

= 0, 0 <X <00, 

iJ!(0, IJ., E) = <Po(fJ, E), 0 < IJ. '" 1, 

(1.1) 

(1. 2) 

(1.3) 

Here x is distance, IJ. is the cosine of the angle between 
the direction of propagation and the positive x axis, and 
E is energy; we take 0 < E < Em. Also, iJ! is the neutron 
flux, at is the total cross section, a is the cross section 
describing the production of all secondary neutrons, 
and <Po? 0 is the prescribed incident flux. 1 

A more general problem than (1. 1)-(1. 3) would have 
<P and <Po depending on the azimuthal angle </>. However, 
if scattering is rotationally invariant and iJ!o and <P are 
expanded in a Fourier series in </>, then the coefficients 
of exp(in</» in such a series decouple from all other 
components and solve a problem essentially identical to 
(1.1)-(1. 3).2 Therefore, we shall consider just the 
above problem (1.1)-(1. 3) and regard it as the problem 
for any given Fourier mode in </>. 

Problem (1. 1)-(1. 3) has received much attention 
over the years, and several different analytical methods 
have been developed to solve it. 1 All of these methods 
are based on the one group or multigroup approxima­
tion- or on the assumption of degenerate energy depen­
dence-and on approximating the scattering kernel a 
by a finite Legendre-polynomial expansion in the an­
gular variables. The reason for making such approxi-

aJpresent address: Los Alamos Scientific Laboratory, Theo­
retical Division, University of California, Los Alamos, New 
Mexico 87545. 
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mations is that the range of the integral term in Eq. 
(1. 1) becomes finite-dimensional in fJ, E space. This 
Simplification however does not, by any means, make 
problem (1. 1)-(1. 3) easy to solve-it only makes the 
problem amenable to certain types of analysis. 

The first method for obtaining explicit solutions of this 
Simplified problem was that of Wiener and Hopf, which 
is based on a Fourier transform of Eq. (1. 1).3,4 A more 
recent and now more popular method is that based on 
singular eigenfunction expansions; 5 this method and its 
development are discussed in detail in the review article 
by McCormick and Kuscer. 6 

It is generally acknowledged that the Wiener-Hopf 
and singular eigenfunction methods are equivalent, in 
the sense that any problem which can be solved by one 
method can also be solved by the other. Both methods 
yield truly explicit solutions only for one-group prob­
lems; for multigroup problems, solutions are expressed 
in terms of the solution of a matrix Riemann-Hilbert 
problem which, in general, has not been explicitly 
solved. Both methods become very cumbersome as the 
number of energy groups and angular moments in the 
scattering kernel a increase. Also, by neither method 
can one construct solutions with L1 boundary data, even 
though L1 is the physically appropriate Banach space in 
which to solve transport problems. 7 

To overcome some of these difficulties, a new method 
has been developed which is based on a contour integral 
representation for <p. This method was first used to 
derive more rigorously the singular eigenfunction for­
malism, 8-10 was later modified to construct L1 solutions 
for one-group problems, 11 and has recently been ex­
tended to provide L1 solutions for multigroup problems 
with degenerate anisotropic scattering. 12 Solutions of 
such multigroup problems are expressed in terms of a 
Wiener- Hopf factorization of a matrix A(X). This fac­
torization has been explicitly obtained only for special 
problems, 13 but it has been shown that in general the 
factorization exists for both subcritical (HC <:. 1") and 
critical (HC = 1") media. 14,15 Some recent work on multi­
group problems indicates that certain iteration schemes, 

Copyright © 1977 American Institute of Physics 1998 



                                                                                                                                    

based on the nonlinear integral equations which the fac­
tors of A must satisfy, converge quickly. 16 

In the present paper, we extend this contour integral 
method to the general problem (1. 1)-(1. 3), with no 
constraints imposed on the various quantities in these 
equations other than ones which are physically reason­
able. We shall obtain a representation of the solution 
of this transport problem as a contour integral, and 
then perform some simple manipulations to recast the 
representation into a physically meaningful form. The 
representation is expressed, as in the previously con­
sidered multigroup problems, in terms of two opera­
tors which suitably factor a third operator; we discuss 
this factorization in Sec. 2. 

Our representation is therefore not expressed in 
terms of explicitly known quantities, since closed-form 
expressions for the factors have not been obtained in 
general. In this sense, our analysis shows how to rep­
resent the solution of the full transport problem (1.1)­
(1.3), without making any unphysical assumptions about 
the scattering terms in Eq. (1. 1). In addition, our an­
alysis provides a general viewpoint from which previous, 
different kinds of analysiS of problem (1. 1)-(1. 3) can 
be understood. (See Secs. 7 and 8). 

In Eq. (1. 1), we shall require a and at> 0 to be mea­
surable functions, satisfying: 

1 
(a) sup -(E) '" >Co < 00, 

O(E<E m at 
(1.4) 

(1.5) 

Physically, >Co is the largest mean free path for neutrons 
with energy E E (0, Em); condition (a) states that >Co is 
finite. 

Condition (b) states that the total reaction rate of a 
particle with energy E before a collision is greater than 
the total reaction rate after a colliSion; hence the half­
space x ' ° is subcritical. 

1/ scattering is rotationally invariant (we do not ac­
tually need to assume this), then a satisfies an addi­
tional equation, which we discuss in Sec. 4, 

a( /1', E' - /1, E) = a(- /1', E' - - /1, E). (1.6) 

We impose the following condition on I/J o: 

(1.7) 

This condition states that the number of particles enter­
ing the half-space through a unit cross sectional area 
of the boundary x = 0, in a unit time interval, is finite. 

Finally, we define the weighted L1 Banach space X by 

X ={J( /1, E) 1 Ittll = foEm f.~ at (E) 1/(/1, E) 1 d/1 dE < oo}. 

(1. 8) 

Then we require I/J, the solution of problem (1. 1)-(1. 3), 
to satisfy 

(1.9) 

Clearly, III/JII(X) is the total reaction rate per unit cross 
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sectional area of the system at x. Equation (1.9) re­
quires that this quantity be finite for each x E (0, 00)_ 
or equivalently that I/J E X for each x E (0,00). 

The above paragraphs provide the appropriate setting 
for problem (1. 1)-(1. 3). In Sec. 2 we shall construct 
a representation for I/J as an integral along a contour 
r+ which contains the positive half of the spectrum of 
the "reduced" transport operator K [see Eq. (2.10)]. 
I/J is expressed there in terms of operators X(>c) and 

1)(- >C) which suitably factor an operator A(>C) contained 
in (AI - KJ-1

. The existence of this factorization for gen­
eral scattering kernels is discussed in Sec. 2. 

In Sec. 3 we shall cast this solution of problem (1. 1)­
(1. 3) in a form which has a simple physical interpre­
tation. In Sec. 4 we shall prove certain results about 
the location of the spectrum of K, and thereby show how 
the contour r+ can be chosen. In Sec. 5 we discuss the 
Milne problem, and in Sec. 6 treat source problems. 
In Sec. 7 we shall indicate how, for multigroup problems 
with degenerate anisotropic scattering, the problem of 
factoring the operator A(>c) can be reduced to factoring 
a matrix A(>C). We illustrate this by explicitly rederiv­
ing the results of Ref. 11 for one-group, isotropic scat­
tering. We conclude with a short discussion in Sec. 8. 

2. CONTOUR INTEGRAL SOLUTION 

To solve problem (1. 1)-(1. 3), we first define the 
operator C:X -X by 

C/(/1, E) = a}E) IaEmfl
l 

a(/1', E' - /1, E)/(/1', E') d/1' dE'. 

(2.1) 

C is a bounded operator with 

Thus by Eq. (1. 5), IICII < 1, and so (I - C)-l exists. 

We divide Eq. (1. 1) by at(E) and operate by (I _ C)-l, 
obtaining 

Kal/J+I/J=O. ax 

Here K is the operator 

(2.3) 

(2.4) 

The domain and range of K are not X, but instead the 
space Xl ::J X defined by 

Xl ={JI /1/(/1, E) EX}, II/Ill = IIlltll, /EX1 . 

If we define 

c= lIell, (2.5) 

then by Eqs. (1.4) and (2.4), K:Xl-XCXl is a bounded 
operator with IIKI11:S >Co/(l- c). (We introduce Xl be­
cause the contour integral solution contains K acting 
on an extension of I/J o. Since I/Jo satisfies Eq. (1. 7), this 
extension will be an element of Xl, but it will not in 
general be an element of X. ) 
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Next we shall construct (Al - K)-l. To do this it is 
simplest to note that X is an invariant subspace of K, 
i. e., K: X -X. Therefore for j, gEe X, we set j= (Al 
- K)g and operate by (I - C) to get 

(I _ C)j(1l E) = A(I _ C)g(1l E) _ Ilg(IJ., E) 
, '~(E) 

But 
= [I - AC A- ll)at(E) ] (A- at~E») g(ll, E). 

(2.6) 

(I - C)j(ll, E) = [I - AC A _ ll~at(E) J j(ll, E) 

11 

Therefore, if we define 

N(A)j(ll, E) 

then Eqs. (2.6) and (2.7) can be solved for g= (Al 
- K)-lj, obtaining 

(Al - K)_lj(ll, E) = A _ ll~at(E) {j(ll, E) 

+ A -1 (A) CN(A)j(ll, En. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

This expression was derived just for j E X, but one 
can directly show that it holds for all j E Xl. In general, 
then, we interpret Eq. (2.10) as follows: For A 
ct[- AO' AO], N(A): XI-X is bounded, and so for JEXl , 
CN(A)jEX. By Eq. (2.8) A(A) :X-X, and if A is such 
that A-l(A) is bounded on X, then A-l(A)CN(A)jEX. 

Thus, a(K) , the spectrum of K, consists at most of 
the line segment [- AO, Aol plus the points for which A-l(A) 
fails to exist. In Sec. 3 we show that this spectrum is 
confined to a "figure-eight" shaped region of the com­
plex A plane. (See Fig. 1 in Sec. 4.) For Aci a(K) , 
(Al _K)-l :Xl -Xl is an analytic, operator-valued func­
tion of A. 

Now, by analogy to Refs. (11) and (12), we shall con­
struct the solution of problem (1. 1)-(1. 3) in terms of 
the following integral representation: 

l/J(x, 11, E) =-2
1

. f 
7ft Jr+ exp(- X/A)(Al - K)-lg(ll, E) dA. 

(2.11) 

Here r+ is a simple closed curve, contained wholly in 
the right-half-plane ReA~ 0, and enclosing the right­
half of a(K). (See Fig. 1.) The functiongEXl remains 
to be determined. 

Since g E Xl> we must interpret the integral of Eq. 
(2. 11) in Xl' Thus, at this point, IJi E Xl for each x 
E (0, 00). Later, however, we shall show that actually 
l/JEXCXl for each XE (0, 00). 

First we shall verify that l/J, defined by Eq. (2.11), 
satisfies Eq. (2. 3)-which is equivalent to Eq. (1.1). 
To do this, we introduce Eq. (2. 11) into (2. 3) and 
obtain 
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This last integral is zero because for X> 0, [exp(- x/All 
A]- 0 as A - 0 along r+. Therefore, Eq. (2.3) is satis­
fied identically for every g E Xl' 

Thus 1Ji, defined by Eq. (2.11), satisfies Eq. (1.1), 
and clearly also Eq. (1. 3). It remains to determine 
g E Xl so that IJi satisfies the boundary condition (1. 2). 
Introducing Eq. (2.11) into (1. 2), this boundary condi­
tion becomes 

lJio(ll, E) =-2
1

. f (Al - K)-lg(ll, E) dA, ° < 11 ~ 1. 
ITt I' + 

(2.13) 

Ij the contour r+ extended around the entire spectrum 
of K, then Eq. (2.13) would be satisfied for any g such 
that 

(2.14) 

Therefore, let us require g to satisfy Eq. (2.14) and 
the condition 

(Al - Ktl g E Xl is an analytic function of A for 
ReA < 0. (2.15) 

Then without change in Eq. (2.13), r+ can be extended 
to enclose the negative half of the spectrum of K since 
by (2.15), the contribution from such an extension is 
zero. 

We thus require g to satisfy Eqs. (2.14) and (2.15), 
and then g will automatically satisfy the boundary con­
dition (2.13). Since Eq. (2.14) defines g explicitly in 
terms of lJio for 0 < 11 ~ 1, then we expect-and shall 
verify below-that condition (2.15) determines g in 
terms of lJio for - 1 ~ 11 < O. [See Eqs. (2.30) and (2.31),] 

To satisfy condition (2.15), we shall utilize the fol­
lowing Wiener-Hopf factorization of the operator A(A): 

(2.16) 

Here X(A): X -X and ij(A): X -X are operator-valued 
functions of A, which are analytic and invertible in the 
left-half-plane ReA < O. Since A(oo) =[ - C, we may re­
quire X, X-l, y, and Y_l to have finite limits at A = 00. 

The problem of obtaining the factors X (z) and ij (- z) 

in the case when A(z) is a scalar function is classical 
and the solution is well known. 4,5 The existence of the 
factorization for a matrix A(z) appropriate to multi­
group neutron transport with isotropic scattering was 
considered by Mullikin, 14 who adapted methods appear­
ing earlier in the Russian literature (see Ref. 14 for 
references). Bowden, Zweifel, and Menikoffl6 have 
shown that the factors for the multigroup problem can 
be computed by iterative solution of certain nonlinear 
integral equations, and that the method can be extended 
to the case of anisotropic scattering with a degenerate 
kernel. The convergence of their iterative method was 
proven under the assumption that the half-space is suf­
ficiently subcritical. In a recent paper, Kelley!7 con­
sidered the case of isotropic scattering with continuous 
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energy dependence and, assuming a compact scattering 
kernel and a bounded total cross section, showed that 
the desired factors exist and can be constructed by 
iterative solution of a nonlinear integral equation. The 
existence of factors, and means for their computation, 
are being considered by the present authors under very 
general assumptions concerning the scattering operator. 
This work will be reported in a future paper. 

In the present paper, we shall assume that the fac­
tors X (X) and Y (X) exist with the required analyticity 
properties. We then introduce Eq. (2.16) into (2.10), 
obtaining 

(>J-K)-lg(J.1,E)=x_ J.1\t(E) {g(J.1,E) 

+X-l(X)y-l(_ X)CN(X)g(J.1, E) }. 

(2. 17) 

Then for condition (2.15) to be satisfied, we must 
have both 

y_l(_ X)CN(X)g(J.1, E) = Y(\ J.1, E) (2. 18) 

analytic for ReX < 0, and 

O=g(J.1, E) +X-l(v)y(v, J.1, E), - 1 ~ J.1 < 0, (2.19) 

where 

(2.20) 

Requiring y to be analytic for ReX < 0 is equivalent to 
requiring the numerator in (>J _K)-lg to be analytic for 
ReX < O. Also, Eqs. (2. 19) and (2.20) state that this 
numerator vanishes for those X values where the de­
nominator vanishes-namely X=v=J.1/at (E). We have 
written this second condition as two equations to empha­
size that while X-t does act on the variables J.1 and E, 
it does not act on II. Equations (2.19) and (2.20) expli­
citly describe g for - 1 ~ J.1 < 0 in terms of y, which we 
must determine from the requirement that Y be analytic 
for ReX< O. 

To determine Y, we rewrite Eq. (2.18) as 

7(A, J.1, E) =!J(- X)Y(A, J.1, E), 

where by Eqs. (2.1) and (2.9), 

7(A, J.1, E) =CN(X)g(J.1, E) 

(2. 21) 

(2.22) 

7 E: X is an analytic function of X for X d. [- xo, Xo], and 
7(00, J.1, E) =0. Thus, by the conditions on!J(- X) and 
Y(X, J.1, E) discussed above, Y is analytic for ReX < 0 if 

2001 

2!i [7+(11, J.1, E) - r(lI, J.1, E)] 

=!J(- II) 2!i [y+(v, J.1, E) - Y-(II, J.1, E)], 

-2
1

. [7+(11, J.1, E) - 7-(11, J.1, E)] 
1ft 
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(2.23) 

=-2
1

. [y+{- II) - y-(- II) 1 y(v, J.1, E), 
1ft 

- Xo < II < 0, (2.24) 

and 

y(oo,J.1,E)=O. (2.25) 

[We use the standard notation /'(11) = lim. _01"(11± iE).] 

To satisfy Eqs. (2.23)-(2.25), we shall make use of 
the following lemma: 

Lemma: Letf(J.1, E) E:X be Holder continuous in J.1 for 
each E, and define f(J.1, E) = 0 for 1 J.11 > 1. Also, define 

F(X)= (Emfl !(J.1',E'), dJ.1'dE'. 
J 0 -1 J.1 - Xat(E ) 

Then 

-2
1

. [r(v) - F-(v)]= jEmf{vat(E'), E')dE', - Xo < v < Xo. 
1ft 0 

Proof: Follows immediately from the Plemelj 
formulas. 18 

To proceed, we shall temporarily assume that 
J.1g(J.1, E) is Holder continuous in J.1. Then we may apply 
the above lemma to Eq. (2. 22), obtaining 

-2
1

. [7+(V, J.1, E) - r(v, J.1, E)] 
1ft 

(2.26) 

- Xo < v < Xo. 

Here we have defined 

(2.27) 

We may now solve Eqs. (2.23) and (2.25) for Y by 
taking 

(2.28) 

Introducing Eqs. (2.26) and (2.14) into (2.28), and 
making the change of variables J.1' = vat(E'), we obtain 

(In this equation, ij-l acts on the unprimed variables J.1 
and E.) Equation (2.29) defines Y explicitly in terms of 
<Po, and thus Eq. (2.29) can be introduced into Eq. (2.19) 
to yield g, for - 1 ~ J.1 < 0, explicitly in terms of <Po. 

It remains to solve Eq. (2.24). But since Y and g 
have been completely determined, then Eq. (2.24) must 
be automatically satisfied. To verify this directly, we 
useij(-X)=A(X)X-l(X), Eqs. (2.8), (2.19), and the 
lemma to get 
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-2
1

. [Y+(- lJ) - Y-(-lJ)} Y(lJ, /-L, E) 
1Tl 

1 
=-2 . [A +(lJ) - A-(lJ) jX-1(lJ)Y(lJ, /-L, E) 

1Tl 

Xg(lJat(E/), E/) dE', - AO < lJ < 0. 

Comparing this result with Eq. (2.26), we see that Eq. 
(2.24) is identically satisfied by g. 

We shall now summarize the results, which we have 
derived by requiring /-Lg(/-L, E) to be Holder continuous in 
/-L. 

The solution i/J of the transport problem (1. 1)-(1. 3) 
is given by Eq. (2.11). The resolvent operator (,\J 
- K)-l is given explicitly in Eq. (2.10), and the function 
gF Xl is defined by Eqs. (2.14), (2.19), and (2.29). 
We may write g more compactly as 

where 

(Again, we emphasize that X-1 and y_1 act only on the 
unprimed variables /-L and E, and not on lJ. ) 

The operator E, given by Eq. (2.30), extends i/Jo(/-L, E) 
to a function Ei/Ju(/-L, E) which is defined for - 1,,:; /-L ,,:; 1. 
Forx=O, Eqs. (2.11) and (2.30) reduce to 

(2.32) 

Thus for - 1 ,,:; /-L < 0, Ei/Ju is the reflection of the incident 
beam i/Jo. (E is the" reflection" operator, defined for 
simpler scattering models in Refs. 8-10 and 12.) 

To derive the above results, we required /-Lg(/-L, E) to 
be Holder continuous in /-L. However, a simple limiting 
argument shows that the results remain valid for f[ E Xl' 
It is also simple to verify that for i/Jo satisfying Eq. 
(1. 7), g=Ei/Jo, defined by Eq. (2.30), is in Xl. 

The only remaining detail is to show that the solution 
i/J is in X for each x, rather than in Xl. We shall verify 
this in Sec. 3. 

3. REFORMULATION OF THE SOLUTION 

Combining Eqs. (2.11), (2.17), and (2.18), we obtain 
the following expression for i/J: 
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. 1 f exp(- X/A) { 
i/J(x, /-L, E) = 21Ti J r+ A _ /-L/at(E) g(/-L, E) 

(3.1) 

From Eq. (2.30) we get 

1 J exp(- X/A) 
21Ti r+ A _ /-L/at(E)f[(/-L, E) dA= i/Jo(/-L, E) exp[- d(x, /-L, E)], 

where 

{

Xat(E)/ /-L, 0< /-L < 1, 
d(x, /-L, E) = 

+00, -1</-L<0. 

(3.2) 

(3.3) 

Here d(x, /-L, E) is the optical distance an uncollided neu­
tron must travel to reach the point x, travelling in the 
"direction" /-L with energy E. Thus, Eq. (3.2) describes 
the uncollided neutron flux. 

A Iso, from Eq. (2. 29) we get 

1 f exp(- X/A) -1 
-2' A / (El (A) Y(\ /-L, E) dA 

1Tl r + - /-L at 

(Emf 1 
= Jo 0 H(/-L',EI-x,/-L,E)i/Jo(/-L',E')d/-L'dE ' , (3.4) 

where 

H(/-L', E'-x, /-L, E) 

I ( {1 f exp(-x/A) v-1 } 
= /-L at E) 21Ti r+ [Aat(E) _ /-L ][Aat(E ' ) _ /-L ']''\ (A) dA 

xY-1 (- ~) a(/-L I, E' - /-L, E) (3.5) 
- at(E ' ) at(E) . 

(X-1 and y_1 act on the unprimed variables /-L and E.) 
Equation (3.4) describes the collided neutron flux. H 
is a regular Green's function describing the collided 
flux at (x, /-L, E) due to the incident flux at (0, /-L ' , E/). 

Combining Eqs. (3.1), (3.2), and (3.4), we obtain 

i/J(x, /-L, E) = i/Jo(/-L, E) exp[ - d(x, /-L, E)] 

(E m r 1 (' I. ). (' ') I I +)0 )0 H /-L ,E -X,/-L,E i/Jo /-L ,E d/-L dE. 

(3.6) 

Using this form for i/J and Eq. (3.5), it is now simple 
to show that i/JEX for i/Jo satisfying Eq. (1. 7). 

4. THE SPECTRUM OF K 

We have already determined, by inspection of Eq. 
(2.10), that the line segment [- AO' AO] is contained in 
the spectrum of K, and that the remaining spectrum 
consists at most of those values of A for which A-1 (A) 
fails to exist as a bounded operator mapping X into X. 
In the following theorems, we shall investigate the 
singularities of A -1 (A). 

Theorern 1: If A E a(K), then "\ E a(K). 

Proof: Let A E a(K) with Ad [- AO, Aol. Then A( A): X - X 
is not invertible, and so either A(A)<jJ = ° for some <jJ 
EX, or A(A)X£,tX.19 If A(A)<jJ=O, then by Eq. (2.6) 
A(X)¢=O, and if A(A)X:jX, then A(X)X=A(X)X=A(A)X 
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cJ X. In either case, A(\) is not invertible, and so A 
Eo-(K). Q.E.D. 

Theorem 2: Let scattering be rotationally invariant. 
If A E a(K), then also - A E a(K). 

Proof: Let A E a(K) with A ~d - AO' AO]' Then, as above, 
we have either A(A)rp = ° for some rp EX, or A(A)XcJ X. 
Let us define M: X -X by Mf(lJ., E) =f(- IJ., E). Then 
using Eqs. (2.8), (2.1), and (1. 6), we may derive the 
identity A(- A)M = MA(A). 

If A(A)rp=O, then A(_ A)(Mrp)=M[A(A)rp]=O, and if 
A(A)X;l X, then A(_ A)X =A(_ A)MX =MA(A)XcJX. In 
either case, A(- A) is not invertible on X, and so - A 
E a(K). Q. E. D. 

Theorems 1 and 2 show that for rotationally invariant 
scattering, arK) is symmetric across both the ReA and 
ImA axes. The following theorem provides a useful es­
timate on the location of a(K); this theorem is valid 
whether scattering is rotationally invariant or not: 

Theorem 3: Let c = II C II. Then for I ReA I <:; AO' a(K) is 
restricted to the set 

I ImAI <:; (1- ~2)1721 ReAl, I ReAl <:; AO, (4.1a) 

and for AO <:; I ReA I <:; Ao/(1 - c), arK) is restricted to the 
following sets: 

(ReA ± 1'\~ c2) 2 + (ImA)2 <:'; (1 ~~2 r 
AO<:'; IReAI 

(4.1b) 

There are no values of A in a(K) satisfying I ReA I :: Aol 
(1- cl. [Thus arK) is contained on and within the curve 
r(c), sketched in Fig. 1.1 

Proof: It suffices to show that for A outside of the sets 
(4.1), A(A) is invertible. To do this, let us consider 
Eq. (2.8). 

A(A)f(lJ., E) = [1 - CM(A) If(lJ., E), 

ImA 

r(CI 

where 

M{A)f(lJ., E) 
V(/J.,E) 

A- /J.la/(E)· 

Then A(A) is invertible if IICM(A) II < 1. 

But M(A) is simply a scalar multiplication operator, 
and therefore 

IICM(A)!!<cIlM(A)I!= sup IA c~ (E)I. 
-1"''' "1 - IJ.; a/ 
O"E"Em 

Thus A(A) is invertible for A satisfying 

(4.2) 

The complement of the set (4.2) is easily shown to be 
the union of the sets (4.1), and therefore arK) is con-
tained in this union. Q. E. D. 

In Fig. 1, r(c) consists of the lines ImA=± (ReA)c1 
(1 - c2)1 /2 for _ Ao <:'; ReA <:; AO' and of the circles 

(ReA ± 1 ~OC2 ) 2 + (ImA)2 = (1 ~CC2 ) 2 

for Ao <:; I ReA I <:; Ao/(1 - c). These curves intersect for 
ReA = ± AO' and at the points of intersection they are 
tangent. 

An upper bound on c= IICII is given in Eq. (2.2). Using 
this expression the curve r(c) can be determined, there­
by explicitly locating the portion of the complex plane 
containing a(K). 

The next theorem concerns the nature of the spectrum 
of K within the set described in Theorem 3. To prove 
this theorem, we must assume that C: X - X is a com­
pact (i. e., completely continuous) operator. While this 
assumption is not true in general, it is true for certain 
real physical problems, and it is always true for multi­
group problems with degenerate anisotropic scattering. 

Theorem 4: Let C; X -X be compact. Then in any 
closed subset of the complex plane which excludes the 

-)0.0 ).0 FIG. 1. The contours r+, ,', 
l-C2 ).0 l-C2 ReA and the curve r(c). [a(K) is 

-+-~~~--~~--"::::'---~~---':::!"'-!....!::---~-+--t---- contained in the region bounded 
by r(c). J 
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interval [- AO' AO), the spectrum of K consists of dis­
crete, isolated, point eigenvalues having finite 
multiplicity. 

Proof; Let S be any closed subset of the complex 
plane excluding the interval [- AO' A01. Then the operator 
CN(A) ; X -X is a compact operator-valued function, 
analytic in S. Furtheremore, 1- CN(oo) =1 - C is in­
vertible. Therefore, by a theorem of Gohberg, 20 A(A) 
=1 - CN(A) is invertible for all A E S except possibly for 
certain eXceptional discrete, isolated ,\ values, '\' For 
any" exceptional" point Ak , zero is a point eigenvalue of 
A(A) with finite multipliCity, Therefore, Ak is a point 
eigenvalue of K with finite multiplicity. Q. E. D. 

We note that Theorem 4 does not exclude the possi­
bility that an infinite sequence of point eigenvalues of 
K exists. However, such a sequence would, by neces­
sity, "converge" to the interval [- Ao, Ao). 

Finally, we discuss some results of Kuscer and 
Vidav21 pertaining to kernels (J(I1', E' - 11, E) which can 
be symmetrized, e. g., which satisfy the detailed 
balance relation. For such scattering kernels, and in 
the context of an L2 rather than an Ll space, Kuscer 
and Vidav have shown that the spectrum of K lies com­
pletely on the real line. If, in addition, C is compact­
in the L2 space-then the" largest" eigenvalues ± AO of 
K are real and have geometrical multiplicity one with 
corresponding eigenfunctions ¢o(± 11, E) which are 
positive. 

These results have not been proved in Ll or for gen­
eral scattering kernels. Consideration of such problems, 
however, is beyond the scope of this paper. 

5. THE MILNE PROBLEM 

The solution of the classical Milne problem5 can be 
constructed using the results of Sec. 2, provided K has 
a point eigenvalue - AO which is real, negative, less 
than the real part of any other spectral point of K, and 
corresponding to which is an eigenfunction ¢_~/I1, E). 
(The existence of - AO and ¢_I. o is discussed in Sec. 4.) 
Then the solution of the Milne problem is 

where a is an arbitrary positive constant and <h is the 
solution of problem (1.1)-(1. 3) with 1/'1(0, 11, E) = 1/'0(11, E) 

= ¢_») 11, E), 

6. SOURCE PROBLEMS 

In this section we shall construct a particular solu­
tion of the equation 

11 ~,~ (x, 11, E) + (Jt(E)I/'(x, 11, E) 

_ (J(I1', E' - 11, E)I/'(x, 11', E') dl1' dE' f Em fl 
o .1 

=q(X,I1,E), a<x<b. 

Here _oo~a,b~+oo; alsoqEXand I/'EXfor every 
xE(a,b). 
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(6.1) 

If we define 

1 
qo(x, 11, E)=-q(x, 11, E), 

j.J. 
(6.2) 

then qo E Xl for each x, and so as in Sec. 2 we may re­
write Eq. (6.1) as 

01/' 
K-+I/'=Kqo, a<x<b. ox (6.3) 

By analogy to Eq, (2.11), we shall construct a solution 
of Eq. (6.3) of the form 

I/'(x, 11, E) =-2
1
./ (AI - K)"lg(X, A; 11, E) dA. (6.4) 

7Tl r 

The above contour r =r+u r- encloses (J(K); see Fig. l. 

Introducing Eq. (6.4) into (6.3), we obtain 

2!i f r (AI _K)-1 (A~! +g)dA=Kqo. 

This condition is met if g satisfies 

og 
A-+g=Aqo, a<x<b, ax 

° =limg, a<x<b. 
~-o 
~Er 

The general solution of Eqs. (6.5) is 

g(X, A, 11, E) 

g.(I1, E) exp[(a _ X)/A] + f.x exp[« - X)/A) 

(6.5a) 

(6.5b) 

Xqo(x', 11, E) dx', ReA': 0, 

gb(l1, E) exp[(b - X)/A] + 1 Xexp[(x~ - Xl/A) 

Xqo(x', 11, E) dx', ReA < 0. 

(6.6) 

Here go and gb are arbitrary functions which can be used 
to satisfy boundary conditions. However, to merely 
construct a particular solution of Eq. (6.1), it suffices 
to take ga =gb = 0. This particular solution is then ex­
plicitly given by Eqs. (6.4) and (6.6), and can be re­
written as 

I/'(x, 11, E) = 2!i fr+ (AI - K)-l {IX eXP[(x'A- X)/A) 

x qo(x', 11, E) dx' }dA 

_ ~ f (AI - K)_l {jb exp[(x' - X)/A) 
21Tl r - x,\ 

X qo(x', 11, E) dx' }dA. (6.7) 

As we did in Sec. 2, we could reformulate I/' into a more 
physically meaningful form, but for brevity we shall not 
do this here. 

We note that the above results apply to both full and 
half-space problems. For the full space problem one 
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takes a = - 00 and b = + 00, and for the x ~ 0 half-space 
problem one takes a = 0 and b = + 00 • 

For full-space problems with sources at finite x and 
at x = + 00 or - 00, one can add to Eq. (6.7) Milne-type 
terms, which grow exponentially as x - + 00 or - 00, to 
represent the effect of the infinite-range sources for 
finite x. [Such a term, which grows exponentially as 
x_+oo, occurs in Eq. (5.1).] For half-space (O<x 
<'.00) problems with sources at finite x and at x = + 00, an 
exponentially growing Milne-type term of the type in 
Eq. (5.1) can be added to Eq. (6.7) to represent the 
source at x = + 00. To satisfy the boundary condition for 
such problems at x = 0, a solution of the type derived in 
Sec. 2 for the homogeneous half-space problem (1. 1)­
(1. 3)-but with a modified boundary condition (1. 2)­
must be added to Eq. (6.7); such solutions are of course 
implicit in the function ga' which we ignored in deriving 
Eq. (6.7) from (6.6). 

In order that the representation (6.7) be defined, it is 
necessary that the terms in wavy brackets be elements 
of Xl for each x E [a, b]. This follows if q(x, Il, E) is not 
only an element of X for each x, but also satisfies 

Ilqll(x) ' Q < 00, X E (a, b) (6.8) 

and 

IIqll(x) is locally integrable in x. (6.9) 

Here 1\ II is just the X norm, defined in Eq. (1.8). Con­
dition (6.9) is a technical condition, but (6.8) states 
physically that the total reaction rate for the source 
neutrons, per unit cross sectional area, is finite for 
each x and bounded by the positive constant Q. 

7. ONE-GROUP, ISOTROPIC SCATTERING 

In Secs. 2 and 3, we constructed the solution of prob­
lem (1. 1)-(1. 3) in terms of the contour integral repre­
sentation (2.11). The major difficulty in carrying out 
this construction is the factorization of the operator 
A(A), which we recall occurs in Eq. (2.10). 

However, by Eq. (2.10), we see that A(A) acts only 
on functions which lie in R(C), the range of the operator 
C. Furthermore, by Eq. (2.8), A(A); R(C) -R(C). 
Hence, in the entire analysis of this paper, we may 
replace A(A) and A-l(A) by their restrictions to the sub­
space R(C) eX. The utility of this is, as we mentioned 
in the Introduction, that if R(C) is finite-dimensional, 
then with a suitable change of notation A(A) and A-l(A) 

can be expressed as matrices whose scalar components 
are functions of A. The problem of factoring A(A) is 
then reduced to the simpler problem of factoring a 
matrix. 

As an illustration, we shall consider the transport 
problem (1. 1)- (1. 3) for the case of one-group, iso­
tropic scattering. We may then simply ignore the en­
ergy variable E and take: 

(It (E) =1, a(Jl',E'-Jl,E)=cl2, (7.1a) 

(Cj)(Jl) =i fll j(J,l ') dJ,l I, 

I}!(O, Il) = l}!o(J,l), 0 < W,,: 1. 

2005 J. Math. Phys., Vol. 18, No. 10, October 1977 

(7.1b) 

(7.1c) 

Thus, R(C) is the one-dimensional subspace of constant 
functions of /J.. Ifj(/J.)=a=const, then by Eq. (2.8), 

AC fl a 
[A(A)j](J,l)=a-T _1 A_ 1./ dJl' 

(7.2) 

Here 

AC il dIJ' 
A(A)=1- T _lA-il' 

is the usual one-group dispersion function, which has 
two real zeroes at ± Vo for 0 < C < 1.5 Thus by Eq. (7.2), 
the restriction of A(A) to R(C) is simply a scalar multi­
plication ope rator. 

The operators X(A) and Y (A) may thus be taken to 
multiplication operators. In fact, let us define the 
scalar function X(A) by 

( 1/2A-VO {1 (1 A'(s) ds } 
X A)=(1-C) A-I exp 27Ti Jo InA_(s) S-A 

Then X(A) is both analytic and invertible everywhere 
except for the cut [0, 1] and the point A = vo, and A(A) 
=X(A)X(_ A). (See Ref. 5.) We may therefore define 

[X(A)j](/J.) =X(A)j(/J.), jE R(C), (7.3a) 

[~/<-\)j](IJ)=X(-A)j(IJ), JER(C), (7.3b) 

and then Eq. (2.16) is satisfied. 

Using the above results, we may now explicitly write 
the solution of the one-group transport problem (1. 1)­
(1. 3), (7.1). This solution is, by Eqs. (3.6), (3.5), and 
(3.3), 

I/!(x, J,l)=l/!o(IJ)exp[-d(x, IJ)]+ Io
I
H(IJ'-x, /J.)l}!o(J,l')dJ.l!. 

Here we have introduced (7.4) 

d(x, /1-)= 

and 

{
xi Jl, 

+00 , 
o < J,l~ 1, 

-1'" J,l < 0, 
(7.5) 

" /1- ' [exp(-x/A) 1 1 
H(IJ -.x, /J.) = 21fi J r.(A- Il)(\- Il') X(A) X(- ).1) dA. 

(7.6) 

Furthermore, by Eqs. (2.30)-(2.32), 

I/!(O, /J.)=;(J,l) folX(_l IJ') /J.'~/IJI/!O(IJ/)diJ-', 

-1 ~ /J. < O. (7.7) 

Equations (7.4)- (7. 7) agree with the results of Ref. 
11. [Note however that Eq. (4.9) of Ref. 11 is in error; 
this equation should be identical to the present Eq. 
(7.7). ] 

If R(C) is not one-dimensional but rather is finite 
dimensional, then as indicated above, the operator A(A) 
may be reduced to a matrix A(A) by a suitable change 
of notation. This situation is treated in detail in Ref. 
12 for the general problem of multigroup, degenerate 
anisotropic scattering. 
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8. DISCUSSION 

We shall now discuss a few aspects of the above an­
alysis. The two primary features of the present work 
are: 

(1) We use a completely general scattering operator, 
assuming only the subcriticality condition, Eq. (1. 5). 

(2) We use a physically motivated Banach space [L1 

with respect to Jl and E with a at(E) weight] as a setting 
for our analysis. 

Previous studies of the transport problem (1. 1)-(1. 3) 
have employed simplified scattering operators (degen­
erate anisotropic, multigroup, etc.) and have often 
been carried out with the assumption of Holder conti­
nuous or L2 integrable functions. Our analysis avoids 
these simplifications, and arrives at a representation 
of the neutron flux iJ!(x, Jl, E) for all of the classical 
plane geometry transport problems: the half-space 
albedo and Milne problems, the half-space with a 
source, and the infinite medium with a source. We have 
also obtained bounds on the spectrum of the reduced 
transport operator K (see Fig. 1) for a completely gen­
eral scattering model. 

Our analysis has been carried out in a physically moti­
vated Banach space setting. We have provided complete 
justification for various mathematical manipulations 
when that could be done without excessive detail. In or­
der to avoid losing sight of the main ideas we have some­
times used formal arguments, such as in the interchange 
of integration and differentiation in deriving Eq. (2.12). 
However, we believe that these technical details are 
minor and have not included proofs in our presentation. 

The main result of our analysis, the representation of 
the neutron flux as a contour integral, has the same form 
as has been obtained for simpler scattering models. 11 ,12 

The curve r+ can be replaced by individual contours 
enclosing disjoint parts of the spectrum of K lying in 
the right-half-plane. The result, in general, is a con­
tribution from the line [0, Ao] which occurs for all scat­
tering models, and contributions from the remaining 
singularities of A-1(A). For various simplified scattering 
models, 11,12 these singularities are known to be isolated 
point eigenvalues of K. However, we cannot rule out 
the possibility that for general scattering models, resi­
dual spectra or additional continuous spectra might 
arise from certain singularities of A -1 (A). 

The relationship between the contour integral method 
employed in this paper and the singular eigenfunction 
method is thoroughly discussed in Ref. 11, and can 
quickly be described by considering the solution (7.4)­
(7.6) of the one-group, isotropic scattering transport 
problem. To derive the singular eigenfunction form of 
the solution, we may rewrite H in Eq. (7. 6) by collaps­
ing the contour r+ about the line segment [0, 1] and the 
simple pole A= vo. Then we may derive the singular 
eigenfunction solution by interchanging certain singular 
integrations and making use of the Poincare-Bertrand 
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formula. 18 To do this, however, we must require 
JliJ!o(Jl) to be Holder continuous [or, using additional an­
alysis, to be Lp integrable for p '> 122]. Thus, while the 
singular eigenfunction solution is perhaps more elegant 
than the contour integral solution, it is also more re­
strictive; the boundary data iJ!o must satisfy unphysical 
smoothness conditions for the singular eigenfunction 
solution to exist. 

The present analysis is restricted to subcritical 
media, but we hope to treat the critical half-space 
problem in a future paper. Aside from its general in­
terest, the solution of this problem is necessary to de­
termine asymptotic boundary layers and the boundary 
conditions to the asymptotic diffusion equation for large, 
three-dimensional, nearly-critical media. 23-25 
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A Green's function for a linear equation associated with 
solitons 
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A linear equation associated with nonlinear wave equations which support solitons is analyzed. A complete 
set of solutions of this linear equation is described through the techniques of scattering theory. This set is 
used to construct an explicit representation of a Green's function for perturbation theory. The cases of the 
nonlinear Schrodinger and sine-Gordon equations are discussed in some detail. 

1. DISCUSSION OF RESULTS 

Consider a nonlinear wave equation which supports 
solitons, 

0tU + H(u)= 0, 

together with its associated linear equation 

L(uix'= 0t X + [oH(u)]X= 0. 

(1. 1) 

(1. 2) 

Here H(· ) is a nonlinear differential operator in one 
space dimension, and (1. 1) is assumed to admit solution 
by the inverse scattering transformation; L(u) denotes 
the linearization of at + H about u. The two main pur­
poses of this paper are the identification of a complete 
set of solutions of (1. 2) and the use of this set to rep­
resent a particular Green's function for equation (1. 2). 

Associated linear equations such as (1.2) have 
appeared in the theoretical literature on the inverse 
scattering transform where it has been observed that 
both "squared eigenfunctions" and "conserved densities" 
satisfy the linear equations. 1-3 Physically, the 
associated linear equations can be interpreted, very 
semiclassically, as a meson field which surrounds a 
quantum soliton. 4_6 For this interpretation, consider 
a "breather" solution u of the "sine-Gordon" equation 

U tt -uxx = -sinu. 

The "meson field bound to this lump" satisfies 

Xtt - Xxx = - (cosu)X. 

A slight generalization of the material in this paper en­
ables one to display a complete set of solutions for this 
"meson field" X. Although we have not used this set for 
field theory, we have used it in a study of fluxon-anti­
fluxon annihilation on the Josephson junction transmis­
sion line. 7 Of course, the linear equation (1.2) is the 
first step in any linearized stability analysis, 4, 8 and it 
is central in the classical perturbation description of 
solitons. 9,10 In fact, as we shall see later, a Green's 
function which naturally arises in classical perturbation 
calculations is a particular solution of this associated 
linear equation. In each of these areas, a clear 
description of the complete family of solutions for the 
associated linear equation will be very useful. 

We denote the collection of all solutions of (1.2) by 

alSupported in part by NSF Grant MPS75-07621. 
blSupported in part by NSF Grant MPS75-07530. 
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N[L(u)), the null space of the linear operator L(u). The 
standard methods of describing this null space begin 
with the assumption that u is a traveling wave, 11 which 
in our case is a single soliton. 4,9,10 In this special 
instance, u depends upon space and time only through 
the combination x - ct. This Simplification permits, 
after translation of coordinates, the reduction of Eq. 
(1. 2) to ordinary differential equations by separation 
of variables. 4,9 Such methods are restricted to travel­
ing waveforms. 

In this paper, by combining classical methods with 
very recent results in inverse scattering theory, we 
present an explicit description of the entire null space 
N[L(u)) which is valid for any solution u of (1.1). 
Specifically, we use scattering theory to describe a 
complete set of solutions of (1. 2), that is, a set of 
solutions which spans N[L(u)). The existence of an 
explicit characterization of this basis is another of the 
remarkable properties of nonlinear wave equations which 
are solved by inverse scattering methods. 

This work can be summarized in very general terms. 
Consider a solution u of (1. 1) which depends upon a 
free parameter A, that is, a parameter which does not 
appear in the nonlinear wave equation itself. Clearly, 
oxu belongs to the null space N[L(u)]. Frequently, when 
working with partial differential equations, this observa­
tion is not particularly useful because too few 
parameters are explicitly available to yield a basis for 
the null space. However, for the exceptional cases 
which are rendered completely integrable by the inverse 
scattering transform, the initial values of the scattering 
data provide enough explicit parameters to generate a 
basis for N[L(u)). It turns out that this basis consists 
of (appropriately normalized) squared eigenfunctions 
of inverse scattering theory. 12 

Our study emphasizes several important aspects of 
the null space. First, N[L(u)) consists of two distinct 
components which we call the "discrete" and "contin­
uous" subspaces. The discrete subspace is associated 
with the N -soliton components of the wave u and is 
finite dimensional, while the continuous subspace is 
associated with the continuous spectrum in the inverse 
scattering transform and is infinite dimensional. This 
structure of N[L(u)) is at the heart of our study of 
perturbations of solitons. 13 Second, the derivation 
emphasizes formal connections between the associated 
linear problem (1. 2) and the theory of inverse scatter­
ing. In fact, the reason that (appropriately normalized) 
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squared eigenfunctions solve (1.2) and the origin of the 
specific normalization are clearly identified in this 
paper. 

One important use of the basis for N{L(u)] is the 
constructuion of a Green's function of regular perturba­
tion theory. Consider a slight perturbation of the non­
linear wave equation (1. 1): 

(1. 3) 

and seek a regular expansion of the form u = Uo + EUI 

+ •• '. With u == u 0 at t = 0, the first order correction 
u1 satisfies the initial value problem 

[L(U O)]U1 = 0tUl + [oH(u O)]u 1 = F(uo) , 

u1I t .o=0, 

and admits a representation of the form 

Ul = f: G(t, t') Fluo(t')] dt' , 

where the Green's operator (function) G satisfies 

L(Uo)G=dtG+[oH(uo(t)]G=O, O<t'<t, 

limG(t, t') =1. 
t .. t' 

(1. 4) 

(1.5) 

(1. 6) 

Since G is a particular solution of (1. 2), it can be 
represented in terms of the basis of squared eigenfunc­
tions. This expansion provides a new use of squared 
eigenfunctions. The representation of the Green's func­
tion G, together with the structure of the null space 
N[L(u)], provides the first step, and indeed the crucial 
step, in a perturbation theory for solitons. It remains 
to use this representation of G to identify secular terms 
in the regular perturbation expansion and to remove 
these secularities by modulating the parameters in the 
unperturbed waveform. 13 

In this paper we restrict our attention to the nonlinear 
Schrodinger equation and to the sine-Gordon equation 
in characteristic coordinates. However, our methods 
easily extend to the wide class of evolution equations 
solved in Ref. 14. 

2. THE NONLINEAR SCHRODINGER CASE 

Consider the nonlinear Schrodinger equation 

(- iO t + 0"" + 2IrI2)r= 0, (2.1) 

and its associated linear equation 

(2.2) 

where it is convenient to consider (2.1) as a system for 
a vector with components rand 1'*; the matrix operator 
h is given by 

h = (~'L+j lrJ.2
_:

1 
_ _ 2't ___ ) 

- 2(r*)2 a + 41 r 12 , 
I xx 

and a3 denotes one of the Pauli spin matrices, 

°
1 
;(0 1), 0

2
;( O. i), a

3 
;(1 0) 

10 -zO 0-1 

In this case the Green's function is a matrix G(x, tl x', t') 
which is defined by the final value problem in (x', t'): 
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[- ia30t,+ h2(r)]G(x,tlx' ,t')=O, 

'fI x, x' E (- Q(), 00), 'fI t' E (0, t), 

limG(x, t I x' ,t') = - i(J30(X - x'). 
t'tt 

Here 

h2G(x, t I x' , t') 

(2.3a) 

(2.3b) 

= (~x'.t2: !1.lJ~,.n : __ ~!:~£.Lrl __ ) G( tl I t') 
- 2[1'* (x', t')]2 : a ,,'x' + 41 r 2(x', t') 1 x, x, . 

The solution of the inhomogeneous equation 

[-i03dt+h(r)]r1==f, r 1(t=0)=0, 

is then given by 

r 1(x, t) = f; fJG(x, t I x', t')]t f(x', t') dx'dl', 

where t denotes the Hermitian conjugate. Each column 
of the Green's matrix belongs to the null space N[L(r )]. 

The analysis of this null space follows from the direct 
scattering theory of the linear eigenvalue problem 14_16 

(0" + U;)Vl = QV2' 

(ox- i 1:)V2= Rv l, -oo<x<oo, 

where R = - Q* = r. The scattering data 5. for this linear 
system is defined as 

5.=s. us:, 
s.;{P.(~), ~E (-00,00); 1:

J
,y;, j=1,2, ... ,N}, (2.4) 

where p. denotes a reflection coefficient, {1:
f

} denotes 
the discrete eigenvalues, {y;} the normalization of the 
discrete eigenfunctions, and s: consists of the complex 
conjugates of S •. This notation is now fairly standard; 
it is summarized in the Appendix. 

The foundation of the inverse scattering method is the 
map between r and the scattering data 5 •. At any fixed 
time t, this map is one-to-one and invertible. The 
evolution of r in t induces an equivalent temporal 
evolution of 5.. In particular, when r solves the non­
linear Schroedinger equation, the temporal behavior 
of the scattering data is given explicitly by15,14,16 

s.(t) = {P.(~, t) = exp(4iet)p.(~, 0); 

1:J(tl= 1:/0), y;(t) = exp(4i~~t)y;(O)}. 
(2.5) 

Since the map from r to 5. is invertible, knowledge of 
5. (t) is equivalent to know ledge of r(. ,t). 

The main point of the preceding paragraph is that any 
solution of the nonlinear Schrodinger equation is param­
etrized by its scattering data at t= O. The variation of 
r with respect to each one of these parameters will 
provide a member of the null space of L. That is, the 
set 

or(x,t) _{or(x,t) or(x,t) or(x,t) 
65.(.,t=O)= op.(~,O)' oP.(~,O)' ~E(-oo,oo); O1:)(t=O) , 

or(x,t) or(x,t) , or(x,tl . 
O1:

J
(t=O) , O1';(t=O) O1';(t=O) , }=1,2, ••• ,N (2.6) 

provides an infinite number of solutions of (2. 3a). 
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TABLE I. 

Ilr(x,t) 
IIp+(Lt) 

Ilr(x,tJ ~ 2 'wA(x p.) 
~ l "bJ 

Ilr(x t) 
1lf5..(l;', t) 

Moreover, this set consists of two distinct types of 
members-continuous and discrete components. 

It is convenient to introduce an additional set of 
scattering data 5 _ which is equivalent to 5 •. (The origin 
of the ± subscripts is that the reflection coefficient p. 
is defined at x == + 00, while p_ is defined at x == - 00. ) 

This scattering data is given by 

5_=5_ u 5_, 
(2.7a) 

S_={pJO, ~E:(-oo,oo):1:" Yj, j==1,2, .. ,N}, 

where the exact definitions are given in the Appendix. 
Under the nonlinear Schrodinger flow, the temporal 
evolution of 5_ is given by 

s-<{) == {PJ~, t) == exp( - 4iet)pJ~, 0): 

1:, (t) == 1:, (0), Yj(t) == exp( - 4i1:~t)Yj(0)}. (2.7b) 

The variation of r with respect to 5Jt==0) provides 
another infinite set of solutions of (2. 3a). The realiza­
tion that either of these sets is complete follows after 
the variations of r are expressed in terms of "squared 
eigenfunctions, " 

. . _(Jf(X, t:1:») _ . . _(J;~(X' t; 1:») 
q,-C~,t,I:)~ • i'C\,t.1:)~ 

J;(x,t;1:) ~~(x,t:1:) • 

q,-A(X, 1:1:) = -i(J2i'(x,/:1:), ~A(X,!;1:)= -i(J2~(X,t;1:). 

Here (</1" </12) and (~l> ~2) denote the components of the 
eigenvectors </I and ljj, which are defined in the Appendix. 
Table I, which expresses or(x,t)/05)t) in terms of 
these squared eigenfunctions, was obtained by Newe1l17: 
analogous expressions for the direct scattering theory 
of the linear Schroedinger equation may be found in Ref. 
18, where they were obtained by a somewhat different 
method. 

The infinite collection of members of the null space 
of L[ r] can now be expressed in terms of squared 
eigenfunctions using Table I, the chain rule, and the 
temporal evolution of the scattering data. For example, 
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or(x,t) or(x,t) opjLt) or(x,t) 

oS-<~,O)== op-<~,O)= op-<~,O)' op-<~,t) 

1 
= -- exp(- 4ie/)q,-A(x,t:O. 

7T 
(2.8) 

Thus, the squared eigenfunction q,-A, when multiplied by 
the factor exp ( - 4i ~ 2 t), is a solution of the linear iz ed 
equation (2. 3a). Gardner, Greene, Kruskal, and Miura 19 
note an analogous result for the Korteweg-de Vries 
equation. We believe that our derivation emphasizes 
the true significance of their observations about solu­
tions of "associated linear problems." For example, 
the multiplicative factor exp( - 4ietl naturally arises 
from the conversion of variations with respect to the 
parameters 5-<0) into variations with respect to the 
functions of time 5Jt). 

In this manner the infinite collections or(x, t)1 

05.(', t== 0), which belong to N[L(r)], can be expressed 
in terms of squared eigenfunctions. Since Kaup12 has 
established the completeness of the squared eigenfunc­
tions, we have, for each fixed t as functions of x, two 
complete sets of solutions. Either of these sets will 
span N[L(r l]. The actual completeness relation is given 
by12 

(~ ~)o(x- x') == -; I [a(~)]2 q,-A (x' ,1:1:)[W (x, t:I:W dl: 

+; 1 [a(:W P(x,t:1:)[W(x,t:1:)]T d1:, (2.9) 
b 

where the contours of integration run from - 00 to 00 

along the real 1: axis, the fir st (C a) indented above all 
zeros of a(1:), the second (C

b
) below all zeros of (f(1:l. 

Finally, we derive a representation of the Green's 
function G in terms of this basis of N(L(u)]. First, 
we seek G in the form 

G( 1") 1 or(x' ,t') AT( ",) 
x,! x ,t = c osJ1:,t'=O) x,t;", (J3 d l: 

a 

1 or(x' t') _T 

+ CbOS~(1:';'=O)A (x,t;1:)03 d 1:, (2.10) 

where the expansion coefficients A and A are column 
vectors to be found. Notice that this formula is a linear 
combination of members of N(L(r)]; hence, it certainly 
solves (2. 3a) as a function of (x' ,I'). The expansion 
coefficients A and A must be selected to satisfy the final 
data (2. 3b). Using this data limt'ttG == - ios] yields 

(~~)o(x-x')== -; 1 i'A(X' ,1:I:)exp(-4n 2t)AT(x,I:I:)d1: 
a 

where we have expressed the variations in terms of 
squared eigenfunctions. Comparison of (2. 11) with (2. 9) 
shows 

A(x, t;1:) == {- i exp (4i1:2 t)1 [a (1:;)y} i' (x, t:1:), 

A(x, t;1:) = {- i exp(- 4i1:2 f)/[a(1:)YHr(x, 1:1:). 

Using these expansion coefficients, we obtain the follow­
ing equivalent representations of G: 
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f 1 (Or(X/,f
/
»)( Or(X,f»)t 

G(x,flx',f/)=irr ([a(1;)]2 os.(I;, 0) oS.(~,o) d~ 
• 

.f 1 (or(xl,f/»)(or(x,f)\f . 
+trr ([a(~)Y osJ~,O) oS.(~,O)J d(~, ) 

b 2.12a 

G(x,flx',t' ) 

= -.; 1 exp[ - [~l~W: -t)]-ItA (x' ,t';~) <¥T(X, t;l;)a3 d~ 
a 

!..j exp[ 4i~2(f' - t)]:T.A ( I f"}o) ;{;T(X t·}o) a dl;' 
- rr ( [a(~)r 'Jt x, ,!, ,,!, 3 ' 

b (2. 12b) 

G (x , t I x' , f' ) = G c (x, t I x' , f' ) + G d (x , t I x' , t' ) , 

where 

Gc(x,tlx',t') 

-!..f" exp[-4i~2(t'-t)L.A( , t,·t),T.T( t·t)a d t - rr _ [a(O]2 'Jt x, .s 'Jt x, ,S 3 S 

= 2 J~{ [a~]2 d~ (exp[ - 4i!;2(f' - f)] <¥A(X' ,f' ;~)-ItT (x, f;~»~=~l3 

-[4 ]3 exp[ - 4il;;(t' - f)] .vA (x' ,f'; I; j) <¥T(X, f; I;J )a3 

+ [a~]2 :1; (exp[+ 4iI;2(t,- t)] ~A(X' ,f';I;)<¥T(X,t;I;»~.cJ a3 

- [~]3 exp[ 4iI~(t'- t)] ;r;A(x' ,t<~);{;T(X, t;~j )a3}. (2. 12c) 

We have listed representation (2. 12a) because it is 
most apparent from this form that G solves the 
linearized equation (2. 3a) in (x' , t') and that Gt solves 
the same equation in (x, f). When displaying the final 
data as f't f, representation (2. 12b) is most useful as 
our derivation indicates. Representation (2. 12c) is the 
most useful in the actual perturbation calculations. 13 

Notice in particular the separation into discrete and 
continuous components. Finally, we remark that when 
r is a pure N-soliton solution, explicit representations 
for both the discrete and continuous squared eigenfunc­
tions exist. 15 

3. SINE-GORDON CASE 

Consider the sine-Gordon equation in characteristic 
coordinates, 

axtC-SinC=O, f'i30, -oo<x<+oo, 

subject to the data 

c(x,f=O)=given 'fix < +00, 

c(+oo,f)=given 'fIf>O. 

(3.1a) 

The initial data is constrained to approach an integer 
multiple of (2rr) as x - 00. In this case, the solution of 
the inhomogeneous equation 
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axt[ 1 - [cost 0][' = j, 

[,(x,t=O)=O 'fix < +00, 

[, (x = + 00 , f) = 0 'fit> 0 

is given by 

[,(x, t) = J: J: G(x, t I x', tl)j(X' , t') dx' dt ' , 

where the Green's function G is defined by 

{ax't' -cos[[(xl ,t')]}G(x,flx' ,t')=O, 

° ~ t' ~ t, - 00 < x, x' < 00, 

limG(x,flx' ,t')=O, 
x'''' _.0 

lim ax'G(x, f I x', f') = - o(x - x,). 
t'tt 

(3.2a) 

(3.2b) 

(3.3) 

(3.4a) 

(3.4b) 

Moreover, it follows from equations (3. 2) and (3. 3) that, 
as a function of (x, f), G must satisfy 

{axt - cos[[(x, t)]}G(x, t I x', f') = 0, 

o ~ f' ~ t, - 00 < x, x' < 00, (3.5a) 

lim G(x, t I x' ,t') = 0, x·- (3.5b) 
lima G(x,tlx',t')=o(x-x'). 
t't' x 

All three characteristic problems (3.2), (3.4), (3.5) are 
depicted in Fig. 1. 

In order to construct the Green's function G we must 
study the null space of the linear operator L = 0xt - cos[, 
where [ is a fixed solution of the sine-Gordon equation. 
As in the nonlinear Schrodinger case, we use methods 
from scattering theory. The same eigenvalue problem 
applies with Q= -R= -t[x' 

FIG. 1. Characteristic problems for [1' G (', • \ x I, t' ), 
G(x, t \',0). Solutions sought in shaded regions. 
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TABLE II. 

6C. (x,t> -~1> ( t·O 
op_(~, t) 1T - X, , 

oC,).x,t) 4'w ,,, ) 
oy/(t) - l _""t;!;j 

6~~;~t> -4iyt ;~ W_(x,t;I;)1 

tj 

6C(x,t> 2 
ayjlt) = !;j w+(x,t;l;) 

In this case. as C evolves according to the unper­
turbed sine-Gordon equation, the scattering data 
evolves as 11 

S.(I) = {p.(~,!) = c-it 12{p.(~. 0); 

1;(/)= t(O), y~(t)= exp(- il/2~h·j+(0)}. (3.6) 
) ) )1 

As before. S_ is equivalent to S. and evolves as 

sJ!) = {PJ~,!) = ('it 12{pJ~. 0): 

~j(tl = ~j(O), y;(t) = exp(iI/2~)Yj(0)}. (3.7) 

Finally, in Table Ha, the variations of Cx with respect 

to the scattering data are given in terms of'G 

<J.i J" I; t) '" ~';(x, I; ~) ± li~(, , I; ~), 

4.>. (x ,I;~) '" 1>;(x, I;t) ± 1>i(x, I;~). 

Here (1'1,1'2) and (1),,1>) are components of the eigenvec­
tors ~, and 1> defined in the Appendix. Moreover, by 
using the identities 

1>jx, I;~) = (1/2i~)() x<P .(x, f;t), 

<J.i Jx, I;~) = (1/2i~)ilx<J.i.(x, f;~), 

which follow directly from the linear eigenvalue problem, 
the variations of [ may be integrated to yield variations 
of [. These are suxmmarized in Table lIb. 

As above, the collection 

6e(x,!) ",{6[(X,t) t". (-00 00)' 
6S (. 0) 6 (t 0)' s E ,. _, p_ s, 

6[(x,0 6[(x,0. '=1 2 00' N} 
6~ (0)' 6Y-(0)·.1 " , 

j j 

constitutes an infinite set of members of the null space 
of L. Using Table II and the chain rule, we are lead to 
seek the Green's function in the form 

G(x, II x' ,I') = Je ei (t'-t) /2'A(x, l;~)<p.cx', t';~)d~. 
a 

Clearly G satisfies the linearized equation (3. 4a). It 
remains to satisfy the data (3. 5b). As l't I, Gx 
approac hes - 6 (x - x'), 

6(x - x') = - 2i Je ~A(x, t;~)<p JX' ,I;~)dt. (3.8) 
a 
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Under symmetries (A2), the resolution of the identity 
(2.9) takes the form 

(
1 0) 1 r 1 
OJ 6(x-x')= -;}e [a(~)J2 

a 

X [>JtA(X', t;~)\F(x, t;~) + O"lIJlA(X' ,t;t;)>JtT(x, t;/:)ul]d/:. 

Multiplying from the left by the vector (1. 1) yields the 
completeness relation 

(3.9) 

Comparing (3.8) with (3,9) yields 

A(x, I;/:) = {1/27Ti/:[a(?;)]2}1JI .(x ,t;I:), 

These expansion coefficients yield the representation of 
G: 

i7T 1 I: (6[(X, tJ\ ( 6[(x' ,I' !) 
G(x,llx

I
,I/)=-2 e[a(/:)]2 ~p.(/:,O)J 6pj/:,0) d/:, 

a 
(3. lOa) 

G(x,llx' ,I') 

== _1 jexP[i(t
l
-t)/2/:)<J.i ( t."),,, ( I t'·/:)dl:. 

27Ti c l:[a(I:))2 • x, ,b '"'. x, . 
a (3. lOb) 

Finally, notice that the asymptotic conditions 
limx __ G = limx __ ~ G = 0 are indeed satisfied if we define 
the contour (C) to follow I: = ~ + iO' as ~ - ± 00. 
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APPENDIX 

In this appendix, we summarize our notation for the 
direct scattering theory. 14,16 Consider the eigenvalue 
problem 

(il x +il:lt, l =Ql'2' 

(o,-iI:11'2=Rl'" -oo<x<+o<). 

For real 1:, define two pairs of solutions: 

1>(x, 1:) '" (~)e-i'X; ~(x, l;):::: (_Ol)e i
', as x - - 00; 

</AX,I:)",(~)ei'X; ~(x,I:)::::(~)e-H' as x-+ oo . 

For real I: the pair (1),~) consists of linearly independent 
solutions as does the pair (</J,~). These solutions are 
related by 

1> (x ,I:) = a (?;)"ij)h ,I:) + b(I:)</J(x, /:), 

(ij(x, 1:)= - a(/:)zj;(x, 1:) + {i(/:)"iji(x, 1:), Im(I:)= O. 

The expansion coefficients (a, b, a, li) can be obtained 
from the asymptotic behavior 
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- (7:)(t )e-j~x ) 
cp(x,t)'" -(1(t)ej~x' asx-+ oo , Im(t)=O. 

The coefficient a(t) admits an analytic continuation into 
the upper half t plane where its only zeros occur at the 
bound state eigenvalues t J' At these eigenvalues, cp and 
l/J are linearly dependent, 

cp(x, t j ) = bjl/J(x, t j ), 

a dependence which defines the normalization constant 
b i' Similarly, the coefficient aU;) admits a continuation 
into the lower half t plane where its only zeros occur 
at Ii' and bi is defined by <i>(x, Ii) = bj ijj(x, Ii). Finally, 
the symmetry Q = - R* yields the relationships 

4i(x,t)=-i0'2[CP(X,t*)]*, Im(tkO, 

ijj(x, t) = - i0'2[l/J(X, t* )]* , 

a(t) = [a(t* )]* , 

ott) = [b(t)]* , 

I}=[tJ]*, bJ=[bJ]*, 

Im(tk 0, 

Im(tk 0, 

Im(t)= 0, 

while the symmetry Q = - R = - R* yields 

4i(X,t)=-i0'2CP(X,-t), Im(t),,;O 

ijj(x,t)=-i0'2l/J(X,-t), Im(tkO 

i1(t)=a(- t), 

b(t)=b(- t), 

IJ=-tJ, bJ=-bJ, 

Im(t),,; 0 

Im(t) = 0 

(Al) 

(A2) 

In terms of these quantities the scattering data is defined 
by 

p.(~)=b(~)/aW, Y;=b/a;, 

pJ~)=bW/oW, y;=[(0;)2y;]-\ 

where a,= (d/dt)a(t) I
cJ

' 
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We study collections of paths-i.e., un parametrized curves--on a manifold such that through every point 
and every direction at that point there passes exactly one path. Among such path structures we 
characterize, analytically and in terms of symmetries, those which consist of geodesics of a linear 
connection. Examples of nongeodesic path structures are given, and some of the results are interpreted 
physically. 

An axiomatic approach to the spacetime structure of 
general relativity can be based on the following concepts: 
a four- dimensional manifold M, a Lorentzian conformal 
structure C on M, and a projective structure P on M 
compatible with C. I The points of M are considered as 
mathematical images of events in physical spacetime, 
the conformal structure represents the causal structure 
as indicated in particular by the propagation of light, 
and the proj ective structure represents inertia which, 
according to Einstein, is identical with gravity, and 
which manifests itself particularly simply in free fall 
motions of test particles. 

Causal structures per se have been investigated in 
detail by several authors. 2 Similar studies concerning 
inertial structures which might lead to a deeper under­
standing of Einstein's law of inertia seem to be lacking. 

The world line of a freely falling neutral test particle 
is uniquely determined by one of its event and its direc­
tion at that event. One is, therefore, led to consider 
collections of paths-unparametrized curves (see 
Sec. I)-such that given a point p and a direction ~ at p, 
there is exactly one path going through p in the direction 
~. The standard example of such a path structure con­
sists of the paths represented by geodesics of a linear 
connection. The question thus arises: How can one 
characterize, analytically and geometrically, the geo­
desic path structures among the general ones? One 
would like particularly to have characterizations which 
can be interpreted physically. 

In this paper we shall give one convenient analytic 
characterization of geodesic path structures (Theorem 1 
in Sec. 3) and two geometrical ones (Theorems 2 and 3 
in Sec. 4). According to Theorem 3, Einstein's law of 
inertia (using geodesics to represent free fall world 
lines) is equivalent to the statement: The set of free fall 
world lines is a path structure with the following 
property (of "local isotropy"): The collection of all path 
elements passing through an event p is invariant under 
a group of local diffeomorphisms which acts transitively 
on the set of all bases of the direction space (see Sec. 
1) at p. (A path element is an equivalence class of paths 
which have a second-order contact at p; intuitively it is 
a second-order infinitesimal piece of a path. ) So, 
roughly speaking, the set of all free fall world lines has 
the highest possible degree of local isotropy which a 
path structure can possess. 

In Secs. 1 and 2 we develop the appropriate concepts 

2014 Journal of Mathematical Physics. Vol. 18, No. 10, October 1977 

to deal with path structures. Sections 3 and 4 contain 
the main results indicated above, and Sec. 5 gives some 
examples of nongeodesic path structures. 

1. DIRECTIONS AND PATHS 

Let M be a connected, paracompact Hausdorff 
manifold of class C k (k ~ 3) and dimension n ? 2. By T plY! 
we denote its tangent space at p E: M, and by 7fT: TM - M 
its tangent bundle. Every Ck curve y: 1-11,;] (I c IR) has a 
(canonical) lift yT: 1- T1VJ, which we call a special curve 
in TAl. The vectors yT(S)E: TyT(s)T1H are the tangents to 
yT. We call a vector XE: T2M a special vector, if it can 
be obtained as a tangent vector of a special curve in TM. 

If 7fT* is the differential of 7fT and fIT the bundle pro­
jection fIT: T 21'vl- TM, then special vectors are char­
acterized by 7fT*X = fIrX. A special CI vector field X: 
TM - T2M is called a differential equation of second 
order. Its integral curves are special curves in TM. 3 

In the sequel we shall specialize the concept of a 
"curve in AI" by requiring: If Y(SI)=Y(S2) and Y(SI)=Y(S2), 
then there exist open intervals II, 12 and a smooth, 
invertible map 11:11-12 such that 11(81)=S2 and yil l 
= (y 0 11) III' (This excludes self- tangency. ) 

In many physical applications the parametrization of 
a curve is arbitrary or not specified a priori. Therefore, 
we need the concept of a path r as a "curve without 
parameter" or, more rigorously, as an equivalence 
class of curves with nowhere vanishing tangents which 
differ only by a parameter transformation. 4 Each curve 
y defines apathy. y is a representative of r, ycr, if 

l'=r. 
We call an equivalence class ~ of vectors X, Y,'" 

E: T pM which are proportional, X =\Y (\ '" 0), a direction 
and write ~ =X = Y = .. '. The directions generated by 
all vectors of-T ji \ {o} form the direction space DpM 
which is isomorphic to IPn

-
1• A path r = l' has a (unique) 

direction y(s) at each of its points y(s). 

The collection of all DpM over M forms another fiber 
bundle DM with projection 7fv and compact fibers DpM. 
For every curve y in M with Y'" 0 there exists a canonical 
lift i into DM, defined by 

r:I-DM:s - y(s). 

We call such curves special curves in DM. 

Equivalent curves y- 11 (i. e., curves which represent 
the same path 11 have equivalent lifts, y- iI. Therefore, 
a path r =:t in M generates a unique path I in DM which 
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we denote by r (the lift of r to DM). As before a path 
in DM is said to be special, if it is the lift of a path in 
M. 

DM is a Ck
-

1 manifold, so we can construct the bundles 
TDM and DDM =D2M with the respective projections 
IT and Il D• Besides IlD there is another natural map from 
D2M to DM which is analogous to 7TT*: T2M - TM. It is 
obtained as follows. Define 

Rl :TM-DM: X-X=~, 

R2 : TDM-D2M: ; - i =:=:, 

and consider the diagram 

TDM~*TM~ DM 

R2~ /~ 
D 2M/-!!. 

Since any two elements ;1> ;2E:Ri1:=:, :=:E:D2M, have the 
same image under Rl 07TD*, there exists a map 7T 

=R 1 0 7T D* 0 R"21 as indicated. In close analogy to the defini­
tion of special vectors in T2M we define: :=: E: D2M is a 
special direction, if 

Il D (:=:) = !!.(:=:). 

Special paths in DM have everywhere special directions 
directions. Moreover, every special direction field of 
class C 1

, 

:=::DM-D2M : ~- :=:/, 

determines unique maximal special integral paths in 
DM and in the original manifold M. 

2. PATH STRUCTURES 

Definition: A path structure (PS) P on M is a set of 
paths in M such that for every point p E: M and every 
direction ~p E: D pM there exists exactly one maximal 
path r E: P which contains p and has the direction ~p at 
p. 

The definition implies that through every point ~ E: DM 
runs exac tly one lifted path r of a path r E: P. Moreover, 
due to the restriction imposed on "curves in M, " r has 
no self intersections whence we have the following 
lemma. 

Lemma: A path structure P on M defines a special 
direction field (section of D2M), 

:=::DM- D2M: ~- :=:/, 

such that for every path r E: P and every point ~ on r 
r/=:=:/. 

This lemma enables us to define the differentiability 
class of a PS. 

Definition: A path structure P is of class CS if the 
corresponding section:=: is of class CS• We always de­
mand s:;:, 1. 

Any special C1-direction field over DM determines 
special maximal integral paths in DM whose projections 
to M satisfy the definitions given above which proves the 
following lemma. 

Lemma: A special direction field of class CS, s:;:, 1, 
defines a CS-path structure on M. 
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According to the preceding lemmas there is a one-to­
one correspondence between smooth PS's and special 
direction fields. For the local analytical investigation of 
PS's special direction fields playa role analogous to 
that of second order differential equations for systems 
of curves. 

For the futher analysis of PS's we describe direction 
fields in local coordinates of D2M introduced as follows. 
Choose any local coordinate system (x4

) for U c M and 
use standard coordinates (X4, yb) in TU such that a 
vector X E: TU is given by 

4 a 
X=y ax4' 

In T2 U we also define standard coordinates (x4
, y b, uC

, 

w d
) by 

4 a b a T2 
X=u ax4+W ~E: U. 

Special vector fields over TU are characterized in these 
coordinates by yb =ub, so that the most general special 
vector field is given by 

X 4 a fb( C d) a =y ax4 + x, y ayo 

with smooth functions fb. 

In DU we introduce coordinates (x 4
, ~B) i3 = 1, ... , n - 1, 

based on (xa, yb), by ~B:=yBjy" (for y";OO). If y"==O we 
use equation ~~:==yBjyb (J3==1, ... ,b-l, b+l, ... ,n) 
with yb;O o. 7Tii(U) is covered by these n coordinate 
neighborhoods. Unless more than one of these patches is 
necessary we use the nth one with (x4, ~~)==(X4, ~B). 

This procedure can be repeated to obtain coordinates 
in D2U. In TDU there are standard coordinates (x 4

, ~B, 
U C

, 1)5) such that 

~=U4 a~4 +1)B-/rsE: TDU. 

To get coordinates in D 2U the 2n - 1 quantities (u4
, 1)B) 

can be divided by one of its nonzero members. However, 
if :=: E D2U is a special direction (and only those are of 
interest to us), then it turns out that there exists always 
one nonzero component of the (u4

). For special directions 
only n coordinate patches are required, defined by 

( 

B r 6 ) 4 B r 6 4 Y u ,1) 
(x , ;b, j.Lb, Vb) == x ,::O-'":T ::7.i ' 

Y Y Y 
b=l, ... ,n. 

b ==n will be omitted as before. 

Furthermore, a special direction field is character­
ized by ;B = j.LB whence such a field is completely de­
scribed by n - 1 functions of 2n - 1 variables 

vY=lI(x4
, 1/). 

Note that prescribing the functions gY in one coordinate 
patch of D2M (the nth one in this case) determines all 
the other V~(X4, ;~). 

3. GEODESIC PATH STRUCTURES 

The most important PS's are given by the geodesics 
of a linear connection r on M. (Such connections always 
exist since M is paracompact. ) In local coordinates the 
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geodesics are given as the solutions of the equations 

xa = - r~c~? xc. (1) 

These geodesics define a path structure P r and a 
corresponding direction field ::::r. In terms of the 
coordinates defined above ::::r is given by 

_ (a 8 Y 0) (a X
8 XY 

:cO X" - 'X"XO 
) 

':::'r = X , ~ , ~ ,V = X , -;n' X"' (X")3 

or, using (1) and putting ~": = 1, 

l'o = 2rl~ao~1 ~c ~d ~e. 

(2) 

(3) 

Thus V
O is a polynomial in ;'" of maximal degree 3. 

Clearly a projective change of the connection or a change 
of its torsion does not affect the functions vo; ::::r is 
determined by the projective PS implied by r. 

Equation (3) shows further that VO does not contain all 
monomials of degree 3 (except for n = 2) and that the 
coefficients of the other terms are not independent for 
different indices o. Trying to construct a direction field 
given by va's which are polynomials, but cannot be writ­
ten in the form (3), one finds that there exists a dis­
continuity in at least one of the other coordinate patches. 
Thus such a direction field is not even Co. We illustrate 
this by a simple 

Example: n=2: Consider both coordinate patches, 

(xa, d,v~)=(xa, ~,v) and (xa, ~Lvi)=(xa,~,v). 

Take 

v = ~P, P > 3. 

From (2) we get ~ = ~-1 and 

v =_ ~3-P 

which is not continuous for ~ = D. 

Similarly it can be shown for n > 2 that if a C 1 path 
structure is given by polynomials VO(~"), then these 
polynomials can be written in the form (3). Because of 
the 1-1 correspondence between polynomials (3) and 
geodesic PS's we can reformulate this result as our 
first characterization of geodesic path structures: 

Theorem 1: For a given special direction field:::: of 
class C 1 there exists a linear connection r whose geo­
desics generate the PS of ::::, if and only if the coordin­
ates v'" of :::: are polynomials in ~8. These polynomials 
are necessarily of the form (3), and r is determined by 
2 up to torsion and projective changes. 

4. SYMMETRIES OF PATH STRUCTURES 

According to a famous theorem of Helmholtz (1868) 
Riemannian spaces can be characterized among the more 
general metric spaces as being infinitesimally isotro­
pic. 5 Since this is an intuitively appealing characteriza­
tion (expressing free mobility of small rigid bodies) the 
purpose of this section is to characterize geodesic path 
structures in a similar way in terms of symmetries. In 
this section we shall show how this can be done. 

We first define (finite) symmetries of PS's. Let cp: 
M - M be a diffeomorphism of class C~. cp induces a 
mapping of the paths r E: P onto a set of paths r', which 
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again form a PS, p<I>. Let us reformulate this operation 
in terms of special direction fields. The differential of 
¢, 

¢*: TM-TM, 

induces a diffeomorphism 

<P*:=~: DM-DM via ~W=(¢.X) 

for X E:~. In the same way the differential 

J:&J.: TDM- TDM 

induces the mapping 

<p •• : =~).: D 2M-D2M, 

for which the following is true: 

Lemma: A diffeomorphism ¢: M - M of class C', 
k ~ 3, induces diffeomorphisms 

<p.: DM-DM and <P**: D 2M-D 2M 

such that for every special direction field 2: DM - D2M 

2<1>: =<P** o::::o<p~l 

is again a special direction field. 

If 2 corresponds to p, then 20P corresponds to p<I>. 

Definition: ¢ is called a symmetry of the path struc­
ture P if p<I> = P or, equivalently, if the corresponding 
direction field 2 is invariant under cp, 

(4) 

A local symmetry of P is a local diffeomorphism ¢: 
U - V of M which maps the restrictions of P-paths to 
U into restrictions of P-paths to V. 

In order to consider isotropy of path structures, we 
denote by Pp the subset of P whose members pass 
through p, and formulate the following definition. 

Definition: A P-rotation about p is a local diffeomor­
phism cp: U - V of M with fixed point p which maps the 
restrictions of elements of Pp to U into restrictions of 
elements of Pp to V. 

The set of all symmetries of a path structure is a 
group G(P), whereas the local symmetries of P and the 
p-rotations (for some point P) form pseudogroups. PS's 
determined by projectively flat linear connections have 
symmetry groups (or pseudogroups) acting transitively 
not only on DpM but even on the set of projective bases 
of DpM. 

Before establishing a converse of the last assertion we 
introduce a weakened, infinitesimal analog of the concept 
of a P -rotation, guided by the analogous Helmholtz 
theorem. For this purpose we observe that if P is a 
fixed point of a local diffeomorphism cp of M, then <P* 
maps D M onto itself projectively and <P** maps n~l 
(DpM) irito itself, so that it is meaningful to restrict the 
second Eq. (4) to DpM. Accordingly, we formulate the 
following definition. 

Definition: An approximate P-symrnetry 6 (APS) at p 
is the restriction to IIi (DpM) of a local diffeomorphism 
<p •• of D2M, induc ed by a local diffeomorphism ¢ of M 
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which leaves p unchanged and satisfies the following 
condition: 

~EDpM ==,>q,**E!=E~*!. (5) 

An APS at p, say>ll, uniquely determines a projective 
isomorphism ~: DpM - D~ since IJi maps fibres lnto 
fibres. The set of all APS's at p is a Lie group Gp(P), 
and the set of the assoc iated maps ~ is a Lie subgroup 
Gp(P) of the full projective gr,9up PG(DpM) of DpM. In 
fact, the map sending IJi into >lI is a homomorphism, 

Gp(P) - Gp(P). (6) 

The differentials rj>*t> of all local diffeomorphisms 
which induce APS 's at p form a subgroup Lp(P) of the 
full linear group LG(T pM) of T pM. Under the standard 
homomorphism h: LG(T pM) - PG(DpM) we have 

Lp(P) - Gp(P). (7) 

We shall denote the center of LG(T pM), which is also the 
kernel of h, as Zp' 

By a dilation at p we shall mean a local diffeomor­
phism rj> of M with fixed point p such that rj>*p E Z P' 

rj>*p'* id. 

Let rj> be a local diffeomorphism leaving p fixed. Take 
local coordinates in M such that x4(P) = O. rj> is then 
given by functions rj>4(xb), and the expression for <P** 
involves only 

arj>4 a2¢a 
rj>~ =axo- and rj>~e ==~. 

The direction field E of a path structure is given by 
the functions Va(xb, e). If IJi is an APS at p induced by 
rj>, then >lI is completely determined by the numbers 

>lI~ == rj>~(0) and >lI~e = rj>~e(O), 

and condition (5) is expressed (in one chart) by 

2~a>ll~n(>lI~V(~S) + >lI~~~b ~e) = (>lI~~b)V(~~~:)' (8) 

where we have written VO(~S) instead of VO(O, ~s). rj> is a 
dilatation at p iff >lib = fOb with f'* 0, 1. 

Suppose t- >lI(t) is a one-parameter subgroup of Gp(P). 
With respect to local coordinates we can represent it 
by smooth functions >lI~(t), >¥be(t) satisfying >¥b(0) == ob, 
>¥be(O) == O. Taking derivatives at t == 0 we obtain param­
eters 1/Jb = >lib '(0) , 1/J~e = >lI:~(O) describing an element of the 
Lie algebra of Gp(P). Applying this to Eq. (8) we obtain 
the infinitesimal version of the invariance condition, 

(9) 

We now return to the discussion of path structures. 
A geodesic path structure P r admits at each point p a 
group Gp(Pr) of approximate symmetries whose image 
Gp(Pr) [according to (6)] is the full group PG(DpM); also 
Lp(P r) = LG(TpM). In particular P r admits everywhere 
approximate symmetries induced by dilatations. We 
shall now prove two theorems showing that the existence 
of some approximate symmetrices suffices, in turn, 
to characterize path structures as geodesic ones. 

Theorem 2: A C1 path structure P is geodesic if and 
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only if it admits at each point an approximate symmetry 
which is induced by a dilatation. 

Proof: The necessity has been pointed out already. So, 
assume that rj> is a dilatation at p which induces an 
approximate P-symmetry. We then have, in local coor­
dinates, Eq. (8) with 1Ji:==fo:, f'* 0,1. Consequently v1 

is a polynomial in ~~. Since this holds at any point p, it 
follows from Theorem 1 that P is geodesic. 

This theorem can be understood intuitively: For f> 0, 
a dilatation "stretches" or "compresses" M radially 
away from or towards p. A path mapped into itself under 
this operation must be "infinitesimally straight." A 
similar idea applies if f< O. The characterization of 
geodesic path structures given in Theorem 2 is closely 
related to Weyl's elementary method to introduce a 
linear connection via locally geodesic coordinates. 7 

Theorem 3: A CW path structure P is geodesiC if and 
only if it admits, at each point p EM, a group Gp(P) of 
approximate symmetries which induces a transitive 
action in the set of projective bases of D pM. 

Proof: Again, the necessity has been established 
already. Let, then, G)P) il!.duce a transitive action in the 
set of bases of DpM. Then Gp(P)=PG(DpM). Relation 
(7) then shows that the corresponding group Lp(P) satis­
fies Lp(P)/Lp(p)n Zp=PG(DpM) whence dimLp(Pb n2 -1. 
Introducing again local coordinates we infer that the 
functions v1 describing P satisfy a system of equations 
(9) not only for one system of parameters (4~, I{~), but 
for a whole family of such systems containing n2 

- 1 
linearly independent matrices ~ [which represent ele­
ments of the Lie algebra of Lp(P)]. Since P is analytic 
the functions V1(~~) can be represented by power series. 
If these are inserted into (9) there results an infinite 
system of linear homogeneous equations in the unknowns 
~, the coefficients of which contain the expansion co­
efficients of v1 of degrees 4, 5, etc. (The lower degree 
terms appear in equations involving also the ~c; these 
equations need not be considered. ) The fact that this 
system admits n2 

- 1 linearly independent solutions (~) 
implies that all the expansion coeffic ients of vY of degree 
larger than 3 vanish, hence v1 is a polynomial, so that 
Theorem 1 gives the desired result. We give the 
laborious proof of the last part of this argument only 
for the case n=2. In this case v=L~ai~i and (9) leads to 

O!z+l(l + 1) <pi + Q!z[(2 - z)1/Ji + (l - 1)</!~] + (lz_1(4 - z)</J~ = O. 

for l ~ 4. The coefficient matrix A of this linear homo­
geneous system for <P= (<pi, <pi, 1/J~, 1/J~) reads 

5'1'5 - 2a4 3a4 0 
6Q!6 - 3a 5 4a 5 - a4 

7 a 7 - 4Q!6 5a6 - 2a .. 
A= 8as - 5Q!7 60!7 - 3a 6 

Since the space of solutions is at least three-dimensional, 
every two-dimensional subdeterminant of A vanishes. 
This implies A = 0, i. e. , v1 is a polynomial. For n > 2 
the argument is similar. 

If n = 4 and M is interpreted as spacetime, we obtain 
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the physical interpretation of Theorem 3 given in the 
Introduction. 

We conjecture that Theorem 3 can be generalized to 
PS's of lower differentiability class, even to class Ct, 
by exploiting (9) or (8) more effectively. 

5. NONGEODESIC PATH STRUCTURES 

Although nongeodesic path structures have lower sym­
metry than geodesic path structures, they are not 
altogether physically uninteresting. To show the exist­
ence of such structures, consider the example in two 
dimensions given by 

1 _ ~5 _ _ 1 _ ~5 
vW=l+""!? and vW= 1 + r 

which is clearly analytic. Parametrized curves repre­
senting the paths can be obtained as solutions of the 
differential equations 

x= jNG·2 + :V), Y = -,:4/(;2 +y2), (x,y) * (0,0). 

(The corresponding spray on TJR2 is of class C1
, but not 

C2
• ) Another example, although only of class C1

, which 
is easily integrable, is 

vW= ~4(\ vCO= _ ~5(3. 

Integral curves through (0,0) are given by 

Y=¥[(X+b)-2_ b-2J, b*O 

plus the two coordinate axes. 

To obtain an important physical example we Slightly 
generalize the concept of a path structure. 

Let E be an open submanifold of DM such that 7r D (E) 
= M. An E path structure P E with domain E is a set of 
paths in M such that (a) through each point P E M and 
each direction ~p E Ep = E n 7ri}(p) there passes exactly 
one path of the set, and (b) the lift of each path of P E 
into DM is contained in E. An E path structure will be 
called geodesic if there exists a connection r on M such 
that each path of PEcan be represented by a geodesic 
of r. 

Examples of E path structures are collections of paths 
which are timelike with respect to a Lorentzian confor­
mal structure of M. In this case E is the set of time like 
directions in Divl. 

We shall now consider a "ti me like " , nongeodesic path 
structure of physical importance. Let (JR4, 71Gb) be the 
flat Minkowskian spacetime of special relativity, taken 
as time oriented, and let Fob (= - F ba ) be a 2-form field 
on JR4 interpreted as an electromagnetic field. Then the 
world lines of particles with specific charge 1 (say) are 
determined by 
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? = F,\xb, TfabX"xb == - 1, ;4> 0, 

where 

(10) 

F'\=71acFCb' 

Introducing direction coordinates ~'" = :COl /:t (Q' = 1,2,3) 
as in Sec. 1 we see that timelike directions obey 

(ef + (e)2 + (~2)2 < 1, 

and that the direction field corresponding to (10) is given 
byB 

v"(~~) = (F" 4 - F'" BE,B - p4 B~B~" )[1 - (e)2 - (e)2 _ C;3)21' (2. 

Theorem 1 implies that the spacetime paths of charged 
particles with a fixed speCific charge form a nongeo­
desic, timelike path structure. This examples can easily 
be generalized to an arbitrary Lorentzian manifold. 
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BClearly this direction field can be continuously extended to 
the set of null directions on which v" vanishes. Hence, the 
limiting paths are represented by null geodesics. 
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Uniformly valid solutions to Volterra integral equations 
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Volterra equations on the infinite interval with the kernel multiplied by a small parameter are studied. An 
approximate solution is obtained and proved to be uniformly valid for all time as the parameter tends to 
zero. The equation is a generalization of the model for the transport of charged particles in a random 
magnetic field. 

1. INTRODUCTION 

Integral equations of Volterra type arise in a wide 
variety of areas in physical and biological sciences­
see for example Refs. 1-3. Usually they describe pro­
cesses such as the "renewal" process, in which the un­
known function at any time is expressible in terms of 
its values in the past. 

The present work generalizes the results of Ref. 3 
where an equation of the form 

(1.1) 

is shown to describe a model for the transport of 
charged particles in a turbulent plasma, such as the cos­
mic rays in the interplanetary solar wind or interstellar 
gas. In that model, jet; QI) denotes the cosmic ray flux, 
K(t) is a logarithmically growing kernel related to the 
two-point correlation function, and QI is a small para­
meter-see Ref. 4. The purpose is to find, as QI- 0+, a 
solution that would be uniformly valid for all t E [0, 00). 

There are two standard methods for solving (1.1). Un­
fortunately, neither of them is useful for our purpose. 
The first is what is known as the Neumann series. For 
a fixed a, one expands j in a power series in a and 
equates coefficients of the same power. 2 It can be 
shown that, under mild conditions on </J(t) and K(t), the 
series converge. However, as t becomes larger and 
larger, the convergence can become slower and slower. 
Therefore, in general, the series is not usefulfor study­
ing the solution for large t. 

The other method is by the use of the Laplace trans­
form. The difficulty in the method is that the inversion 
process and the proof that the function so obtained is in­
deed a solution are nontrivial tasks-see Ref. 5. Often 
the inversion has to be done by numerical means. 

In our problem, the exact solution depends on a para­
meter and the time variable t and there are two limiting 
processes, viz. a-a+ and t- oO • We want to find an 
asymptotic solution, as a - 0+, that would be valid not 
only for every fixed t, but for all time t, i.e., to seek a 
function g (t; a), as an approximation that differs from 
the exact solution by an amount which tends to zero with 
QI, uniformly in the interval 0"", t <00. 

First, an approximation to the solution of the integral 
equation is produced by a heuristic argument. Then its 
uniform validity for all time t is proved. 
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2. UNIFORMLY VALID APPROXIMATIONS 

Uniformly valid solutions are found for Volterra inte­
gral equations of the form 

jet; a) = 1 - a J: K(t - r)j(r; a)dr 

where a is a small positive parameter. [For simplicity, 
the argument a will be dropped from the various func­
tions from now on; for example, jet; a) will be written 
as j(t).] 

In the model of cosmic ray transport (see Ref. 4), 
J(t)= 1- aI; In(l+ t- r)j(r)dr, the kernel is positive 
and increasing. Consider more generally j(t) = 1 
- a It K(t - r)j(r)dr. If the kernel is positive and in­
creasOing and if we expect the solution to be bounded, 
then the major contribution of the kernel to the integral 
would come from large values of t - r. Let g (t) be the 
solution to the equation 

g(t) = 1- a K(t) r g(r)dr. 
o 

It would be assumed that K E C2 for 0 "'" toO. 

Theorem: If (1) K(t) >0, t>O; (2) al(t + b) "'" K'(t) "'" cI 
(t +d) where a, b, c, and d are positive constants; (3) 
- al(t + b)2 "'" K"(t) < 0; and (4) K"(t)/K'(t) is nondecreas­
ing, then j -g=o(l) uniformly in t as a-O+. 

Prooj: The proof is in the same spirit as the one 
given in Ref. 3. 

A. Integral equation for the error 

(1) Let h(t)= j(t)-g(t), the error. Then h satisfies 

h(t)= ¢(t) - a{ K(t - r)h(r)dr, 
o 

where 

¢(t) = a K(f) {g (r)dr - QI r K(t - r)g(r)dr. 
o ° 

(2) Since the integral equation satisfied by j has the 
same kernel, by the convolution theorem,' 

h=¢+¢*f'. 

B. Properties of g 

(1) First note that g can be solved exactly. For if we 
let G(t)= {g(r)dr, then 

° 
G'(t) + a K(t)G(t) = 1 , 

so 

G(t)={l/exp[ t aK(r)dr]}J
t 

[exp r aK(r)dr]ds. o 0 0 

Copyright © 1977 American Institute of Physics 2019 



                                                                                                                                    

(2) g (t) has a zero: The existence comes from the 
fact that G(O)=O and by L'Hospital's rule G(oo)=O, so 
there exists a to such that O<to<oo and G'(to) =0; that is, 

g(to)"' O. 

(3) g(t) has only one zero: The uniqueness comes 
from the equation 

g '(t) = - a K'(t)G(t) - a K(t) g (f) , 

where at a zero of g, the last term is zero, the first 
term is negative and so g' <0. Since at adjacent zeroes 
of g, the signs of g' must be opposite, we conclude that 
g (t) has only one zero. 

C. Estimate of the zero of 9 

Let to be the zero of g (I). 

(1) Lower bound: fo '"' I/aK(I/a) for a such that 
K(11 a) ,",1. Let U(t) = exp r a K(T)dr , then 

o 

so 

1 11 g(t)=I-aK(t) u(t) oU(t)dT, 

1= aK(to) r o U(r)dr. 
U(to) 0 

Since U(t) is increasing, we have 

1'" a K(to)to ; (2.1) 

that is, to'"' II a K(to) for all a. Suppose to'"' II a K(ll a) 
is not true for an a satisfying K( 1 I a) '"' 1. Then 

1 
to < a K( 1/ a) , 

atoK(to) <atoK[aK/lIa)] < K(l~a) K[aK(~/a)] 
"'1, since K(1/a),",l, 

so atoK(to) < 1, a contradiction to (2.1). 

(2) Upper bound: to < II a for a sufficiently small. It 
will be shown that g(l/ a) < ° for a sufficiently small. 
Consider again 

g(t)=l- aK«(t» I t
U(r)dr . 

Ut 0 

Let fl be a point at which K(tl) ,",land write 

I t U(r)dr = fIU(T)dr + f U(r)dr for t > tl . 
o 0 ~ 

Evaluating the second integral by parts, we get 

11 u(r)dr= U(t) _ U(t l ) + ~ 1 t U(r) K'2(T) dr 
tl aK(t) aK(tI) a tl K (r) 

'"' u(t) _ U(tl) + ~ It U(T) K'(T) dT, 
aK(t) a a II K2(T) 

so 

a K(t) 1 tl K(t) ( 1 t K'(T») 
get) '" - U(t) 0 u(r)dT + u(t) U(tl) - tl U(T) K2(T)dT , 

(2.2) 

where the first term is negative and u(tJ'" exp 1 tl K( r)dr, 
o 

for a'" 1. 
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What remains to be shown is 

11/01 K'(T) 
I U(T) K 2(T)dT-oe 

I 

as a -0'. We have 

U(r) = exp[ £11: K(S)dSJ ' 

where using integration by parts and the fact that K'(t) 
'" c/(t +d), we get 

r K(S)dS '"' T[K(T) - c] 
o 

= r [K(t) - c] + T [K(r) - K(t)] , 

where 

Itt +d 
K(t) - K( T) = K'(S)dS", C - , 

T T 

so 

r K(S)dS '"' r[K(t) - c] - c(t +d). 
o 

Therefore, 

(t K'(T) 
J

t
, U(T) K2(T)dr 

K'(t) I 
'"' --:;--( ) exp[ - ac(t +d}] 1 exp[ar(K(t) - C)]dT K t t, 

K'(t) 
aK 2(f)[ K(f) _ c] exp [ - ac(t + d)] 

x {exp [at(K(t) - c)]- exp [atl(K(t) - c)l}, 

(2.3) 

('/01 K'(T) 
J

t 
U(T) K2(T) dr 

I 

for a small such that K( II a) > c. Observing that the 
first term - 00 and the second term - 0 as £1- 0', the 
proof is complete. 

(3) Upper bound: to <ML/ aLI for a sufficiently small 
where M is a constant, LI =K(l/a), L 2 "'lnK(1/a). Let 
V(t) = exp J: K(T)dT, then from (2.2) 

_ (to K'(T) 
U(t l ) '"' J. U(T) K 2(r) dT, 

I, 

so from (2. 3), we obtain 

V(tl)'"' aK2(t~~~(~0)- c] exp[- ac(to+d)] 

x {exp[ ato(K(to) - c)] - exp[ atl(K(to) - c)]}. 

For a sufficiently small, 
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+ In {I - exp[ - cdo(K(to) - c)+ afl(K(to) - e)J}. 

(2.4) 

Suppose for any k >0 and a k no matter how small, 
there exists a < a k such that to'" k L/aL I. We will ob­
tain a contradiction to (2.4). 
1st term: 

atoK(to) '" kL2 K( kL2) 1 , 
3InK(to) ~ 3L I aLI lnK(l!a) 

for some a < a k , a k sufficiently small 

_ k K(kLzl aLI) 
- 3" LI 

Since K(t) - K(T) ~ e In((t + d) iT) for T < t, we have 

( kL) (k) [ kla+d ] 
K aL"1 "'K a -eln kL/aL I ' 

so 

where 

e 
E = - [In(k+ ad)+L z -lnk-InLzJ ~ EI < 1 

LI 

if a k is sufficiently small. 

Finally, 

atoK(to) '" ~ (1- ) for k'" 1, some a <a
k

, 
3lnK(to) 3 EI 

a k arbitrarily small. 

2nd term: 

- 2eato - 2e 
-;;-;-~~ > --- since ato < 1 for a k 3InK(to) 3 Ink (to) 

sufficiently small, 

- 2e 
> 3lnK(l!aL

I
) by estimate (1). 

(2.5) 

But II aL 1- 00 as a - 0', therefore given any E2 >0, we 
have that 

- 2eato 
3InK(to) > - E2 for a k sufficiently small. 

3rd term: 

Clearly 

- aed 
3In K(to) > - E3 for a k sufficiently small. 

4th term: 

-1n[aU(tJIK'(to)] 
3lnK(to) 

Note that 

aU(tI) aU(tl) 
K'(to) < K'(l/a) for a small, 

where 

K,(I) a _ aa a >l/a+b-l+ab' 
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so 

Therefore, given any E4 >0, 

-In[aU(tJIK'(to)]/3lnK(to)>-E 4 for a small. 

5th term: 

In {I - exp [ - ato(K(to) - c)+ atl(K(to) - e>J} 
3lnK(to) 

By estimate (2), 

exp[ - alo(K(to) - e)] < exp[e - atoK(to)J 

for a small, 

where 

_00 as a -0. 

Therefore, the numerator of the 5th term is bounded 
away from - 00, and given any E 5> 0, 

In {I - exp [- alo(K(to) - c)+ atl(K(to) - e)l} 
3InK(to) 

> - E 5 for a small. 

For k sufficiently large the five terms add up to a 
number greater than 1, a contradiction to (2.4). 

(4) Lower bound: lo>ln(N'K(to»/aK(to) for a suffi­
Ciently small where N= (1- Eo)la, 0 <Eo < 1. 

A lower and an upper bound will be put on f6 K(s) ds. 
Lower bound: 

J T K(s)ds = SK(s)j' - r sK'(s)ds 
o 0 0 

Upper bound: 

'" TK(T) -1 T S _e_ ds 
s+d 

~ T[K(T) - e]. 

J T K(s)ds = (s + b)K(s) IT - r (s + b)K'(s)ds 
o 0 0 

~ (T+ b)K(T) - bK(O) - aT 

~ T [K( T) - a] + bK( T) . 

Therefore, we have 

exp{ato [K(to) - e]} ~ V(lo) 

~ exp {alo [K(to) - a] + abK(to)} 

and since alo and aK(to) <aK(l/a) both go to zero as 
a - 0, V(to) - exp [atoK(to)] as a - O. 

Now we are ready to derive the above lower bound (4) 
on to for a small. As before, 

1 = aK(to) J to V(T)dT ---uro- 0 

'" aK«(to» Fo exp{aT[K(T)-a]+abK(T)}dT 
V to 0 
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-'" a~~y exp[ abK(to)] J;o exp{aT[K(to) _ a]}dT 

= [K(to)/U(to)j(exp{ato[K(to) - a]+ abK(to)} 

- exp[ abK(to)])/[K(to) - a] 

K(to) U(to) + Eo - 1 f ff 
< U(to) K(tol _ a or a su iCiently 

small, 0 <Eo < 1, 

so 

- aU(to) < (Eo - 1)K(to) , 

U(to) > (1 -a Eo) K(to) , 

1-E where N = __ 0 • 

a 

On the other hand, 

U(to) = exp[a r o K(T)dT] < exp[atoK(to)] ' 
o 

so In U(to) < a to K(to) for all a and 

atoK(to) > In [N' K(to)] for a small, 

t > In [N'K(to)] 
o aK(to) 

D. Bound on g 

(1) Bound on g for g positive: Since 

g'(t) = -aK'(t)G(t) - aK(t)g(t) 

and g(O)= 1, g'(t) < 0 for 0 -'" t < to and so 0 -"'g(t) -'" 1 on 

o -'" t -'" to' 

(2) Bound on g for g negative: If t > to, then 

g(t)= 1- aUK(() fO U(T)dT + f U(T)dT, 
toto 

where 

so 

(2.6) 

Therefore, 

(2.7) 
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where 

f t (3K'2 -KK") 
2K4 UdT 

to a 

= f t (3K'2 -KK" • UK') 
t aK 2K' a~ dT 
o 

<: 3K'2(ta) - K(to)K"(to) It K'(T) 
~ aK2(t lK'(t) U(T) aK2(T) dT 

o 0 to 

since - K" /K' is nonincreasing. 

From (2.6) and (2.7) we see that 

1 
(t) 1-'" K'(t) + 3KI2(to) - K(to)K"(ta) 1 (t) 1 

g aK2(t) aK 2(to)K'(to) g 
(2.8) 

c [ 3c 
-'" a(t + d)K2(t) + a (to + d)K 2(to) 

K(to) ] 
+ a(to+b)K2(to) Ig(t)1 

c 3c+K(to) 1 1 
-'" a(t+d)K 2(t) + ataK2(to) g(t) , 

since 

3c+K(to) _ 3c 1 
ataK2(to) - atoK 2(ta) + atoK(to) 

3c 1 
< k(to) + In[N'K(t

o
)] for a small 

-'" 01 < 1 for a sufficiently small , 

so 

Ig(t) 1-'" a(t + ;)K2(t) + o,lg(t) I, 

Ig(t)I-'" (1- o,)a(~ +d)K2(t) = a(t +~)K2(t) say. 

E. Bound on rp 

Using the results in Secs. 2C and 2D, it will be shown 
that 1>(t) = o( 1) uniformly in 0 -'" t < 00 as a - 0+. 

(1) Bound on 1>(t) for 0 -'" t -'" to: We have 

1>(t) = aK(t) r g(T)dT - a r K(T)g(t - T)dT 
o 0 

= af[K(t) -K(T)]g(t - T)dT. 
o 

Since 
t+d 

K(t)-K(T)-"'cln -- for T-"'t, 
T+d 

i tt +d 
1>(t) -'" ac In --d dT for 0 -'" t -'" to 

o T+ 

i t T+d 
=- ac In --dT 

a t + d 

= _ ac(t + d) r' Ins ds, 
Jd/(t+d) 

T+d 
where s=-­

t+d 

-'" - ac(t + d) r Ins ds 
o 

= ac(t + d) 

-'" ac(to +d) , 

where ata < ML/L , for a sufficiently small, so 1>(t) 
=0(1) uniformly on [0, to] as a -0+. 
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(2) Bound on cp(t) for to<t<oo; We have 

cp(t) = CPl (to)+ CP2(t) for to < t < 00 , 

where 

cP 1 (to) = O'rO[K(t) -K(t- T)]g(T)dT, 
o 

CP2(t) = O'r [K(t) -K(t- T)]g(T)dT. 
to 

We want to show that CP2(t) = o( 1) uniformly in t as 
0' - 0'. We have 

I CP2(t) I ~ O'J:)K(t) - K(t - T)]lg(T)ldT 

~ It (cln t~;:d ) (T+d~2(T) dT 
o 

~ K ~~o) lJ In ( 1 - t: d ) I T ~Td 
= ~ II Iln(l- S(t+d)-d)ldS, 

K 2(tO) (to+d) I (t.d) t + d S 

T+d 
t+d =s, 

= ~ (1 lIn (1 _ s + _d ) I ds 
K2(tO) J(tO+d)1 (t.d) t + d s 

em 11 lIn (1 - s) I ds 
~ K2(to) 0 S 

=0(1) as 0' -0+. 

F. Absolute integrability of " 

Applying the Laplace transform to the integral equa­
tion and inverting to obtain f, it can be shown that f' is 
absolutely integrable, 

f(t)= 1- 0' J~K(t - T)f(T)dT. 

Let I(s)= J; e-stf(t)dt, K(s)= J; e-stK(t)dt, then 

- 1 1 
f(s)= s(1+O'K(s» = D(s)' say. 

Three properties of D(s) can be shown: 

(1) Clearly if s is a zero of D(s), then so is s. 

(2) D(s) '" 0 for Re[s] sufficiently large. 

(3) D(s) has two zeroes for 0' sufficiently small. 

Proof of (2); Let the Laplace transform of Ko(t) 
= In(1 + t) be denoted by Ko(s). We have 

er 
Ko(r) = - E(r) for r real, 

r 

where 

1"" dt 
E(r)= r W' 

so Ko(r) ~ l/r 2. 

Since K(t) ~ eln (1+t/d)+K(0) , 

IK(s)1 ~K(x) ~ edKo(xd) + K(O) 
x 
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for x>O, x=Re[s]. 

ID(s) 1 = 1 s 11 1 - (- O'K(s» I 

~ I s 111- 0' IK(s) II, 
since 

= O'Q(x) 

< 1 if Q(x) < .!. , 
0' 

so I D(s) I> 0 for x sufficiently large. 

Proof of (3); It was shown in Ref. 3 that Do(s) = s 
+ O'sKo(s) has only two zeroes (which are conjugates of 
each other) and the only singularity of Do (s) is the 
branch point of the logarithm at s=O. [Do(s)=s+ O'eSE(s) 
= s + a eS

( - Ins - y+ e 1 (s» where y is the Euler constant 
and e1(s) is analytic.] Since 

K(O)+aln(l+ ~) ~K(t) ~ e In(1 + ~ )+K(O) , 

K(t) = K(O) + a In (1 + ~ ) + e(t) , 

where 

o ~ e(t) ~ cln (1 + ~) - a In (1 + f) . 
Let 8(s) be the Laplace transform of e(t), then 

K(s) = K(O) + abKo(bs)+ 8(s), 
s 

so 

D(s) = s(1 + aK(s» 

= s [1 + aabKo(bs)] + aK(O) + as8(s) , 

where 

18(S) I ~ e(x) ~ edKo(dx) - abKo(bx) , 

x=Re[s]. 

(2.9) 

It can be shown, by the Rouche theorem, that D(s) has 
only two zeroes. Consider the positive-oriented cir­
cular contour with a slit along the negative real axis, 
say C, C=U~=1 C i where 

C 1 ={s = Rei8; 0 ~ {3 ~ [1T _ arctan (Ei(R 2 
_ E 2)1/2]}, 

C2={s=x+iE; _(R2_E2)112~X~0}, 

C3={s=Eei8 ; -1T/2~{3~1T/2}, 

C.={S=X-iE; _(R2_E2)1/2~X~O}, 

Cs ={s =Re i8; - 1T + arctan(E/(R2 - E2)1/2) ~ f3 ~ o}, 

where R is sufficiently large and E small so that for a 
= 0'0 say, the zeroes of D(s) lie inside the contour C. If 
0'<0'0' the zeroes of D(s) lie inside the circle of radius 
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't 

c, 

R V, 

FIG. 1. 

R and center at the origin, so let R be fixed and let E 
be small so that the zeroes are inside C. See Fig. 1. 
On C, 

IDo-DI=alsIIKo-KI 

~ a I s I ( I Ko I + I K I ) 

~alsl(Po+p), where Po andP 

I D I = I sill + aK I 

?l s I11-aIKII 

are constants, 

? I s I (1 - a p) for a sufficiently small. 

Therefore, 

IDo-DI~IDI on C for a small 

and by Rouche's theorem, Do(s) and D(s) have the same 
number of zeroes inside C. 

The two zeroes of Do(s) are in the left-half-plane; if 
now the Rouche theorem is applied to the contour con­
sisting of Cl' V" C3 , V2 , and C4 , it is clear that the 
two zeroes of D(s) are also in the left-half-plane. 

Utilizing the poles and branch cut of [D(s WI, we find 
the inverse 

J
r +IR est 

lim --ds, 
R-~ r-iR D(s) 

where r>O such that [D(S)]-1 has no singularities for 
Re[s]? r. 

Consider the following positively oriented paths: 

ro={s=r+iy: -R~y~R}, 
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~ (e2 _ 02)1I2}, 

r3 ={s =EeiB : -1T + arctan (0/(E2 _02)1/2)~ (3 

~ 1T- arctan (1I/(E 2 _02)1/2)}, 

r 4 ={s =x - io: _ (R2 _ 02)1/2 ~ X ~ (E 2 _ 62)1/2}, 

r s = {s =ReiB
: - 1T + arctan (0/(R2 - 02 )1/2) ~ (3 

~ - arctan«R 2 _ r2)1 12jr) , 

where 0 < 0 < E < r, E small, and R suffiCiently large such 
that the two poles of [D(SWI are inside the closed con­
tour. See Fig. 2. 

By Cauchy's residue theorem, 

1 i est 1 ~ i est 
-2' D() ds= L Res [est/D] - -2 . L D( ) ds. 

1Tt ro s 1Tt j=1 rj s 

Let So be a pole of [D(S)]"I, then 

Res [est/D] I =b eSot 
S=So 1 , 

where 

b1 = lim (s - so)/D(s) , 
s-so 

Res [est /D] Is=st = b~esot . 

For contours r 1 and rs: Since IDo(s)l- R as R-oo, 
from (2.9), 

I est I ext 
lD(s) I = TD(S)T - 0 

as R - 00, x = Re [s ], so the contribution of the contours 
r 1 and r s vanish as R - 00. 

For contour r3: Since IDo(s)l-alnE-1, as in above, we 
see that the contribution of the contour r 3 vanishes as 
E -0+. 

For contours r 2 and r 4: 

~-----~1-~---~ 
S lr-----(---____ J.....- y 

FIG. 2. 
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the result for r 4 is minus the complex conjugate. Let 

i { e~-1 e2(~)= - el (- ~)= -- dz 
o z 

and let R-oo, E -0+; then 

where 

where 

abe-{ 

B(~) = g+aabe-t[ln~+y+e2(~)]-aK(0)+a~e(- ~W+(aab1Te-{)2' 
Since 

B(~)-(aabln~t2 as ~-O+, B(~)-[~+a~O(- ~>r2e-{ as ~_oo, 

the integrall (t) converges uniformly and 

f'(t) = 2Re [sobl esoll + a J; ~e-HB( ~)d~, If'(t) I .:; 21 sobll eRe[Solt + a J ~ ~e-HB( ~)d~ . 

Since Re[sol <0, 

J: 1f'(t)ldt.:; 2I sobl IIRe[soll-l+ a J~ B(~)d~, 
but 

1= f(0)=2Re[b l ] - aJ~ B(~)d~, 
o 

so 

G. Uniform validity 

f(t) - g(t) = 1>(t) + r 1>(T) f'(t - T)dT , 
o 

using the results in Sees. 2E and 2F, 

If-gl.:;0(1}(1+ J"'If'(t)ldt) =0(1) as a-O+. 
o 
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On the combined Dirac-Einstein-Maxwell field equations 
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This .paper dis~usses the ~ombined Dirac-Einstein-Maxwell equations in general relativity. The 
combined equatIOns ar~ denved from a variational principle which involves the variation of tetrad fields. A 
class of exact, self-conslst~nt solutio~s is fo~nd where the metric is static, the electromagnetic field is just 
electrostatic, an~ the splnor field IS stationary in the wave mechanical sense. These solutions are 
~nalogous to . Dirac's plane wave solutions which propagate along the x 3 axis and are not square 
Integrable. It IS shown that under reasonable physical conditions there do not exist solutions with finite 
total charge. It seems that the static electro-gravitational background is not compatible with locali bl 
matter fields possessing intrinsic spin. za e 

1. INTRODUCTION 

In recent years1 a lot of interest has been focused on 
spinor fields in curved space-time. In our opinion it is 
a promising sign that people are investigating the pos­
sibilities of gravitational effects on the structure of 
elementary particles. These pursuits might bring 
Einstein's gravitational theory closer to laboratory 
experiments. 

Some years ag02 it was realized that a matter field 
which generates both an attractive and a repulsive field 
may very well allow stable self-consistent solutions due 
to the possible equilibrium between two types of forces. 
Indeed a class of exact, self-consistent solutions of the 
combined Dirac-Einstein-Maxwell equations were 
found where the spinor affinity was assumed to have an 
extremely simple form3 not allowing the general spin 
transformations. In special relativity a similar problem 
was taken up4 for the Dirac field in the presence of 
electromagnetism and a Stuckelberg-type cohesive 
force. Again, some exact, self-consistent solutions 
were found. Similarly, the combined Dirac-Maxwell 
equations were investigated5 in the curved geometry of 
Rastall's gravity. Analogous to the spin-t cases, 
several papers6,7 came out with exact, self-consistent 
solutions of the combined Klein-Gordon-Einstein­
Maxwell field equations. 

In this paper we investigate the combined Dirac­
Einstein-Maxwell field equations using the spinor 
calculus in its full generality. Even the writing of the 
combined equations, especially the gravitational equa­
tions, is not completely obvious. The most reasonable 
approach is the variational derivation. In this case, 
however, the variation of the metric is ineffective and 
we have to consider the variation of the tetrad field. 
Fortunately, the elegant paper of Rosenfeld8 developed 
the variational machinery for the combined spinor and 
gravitational fields. These techniques were explicitly 
adopted by Bergmann and Thomson9 for the combined 
Dirac-Einstein equations. The complicated expression 
for the material energy-momentum-stress tensor 
of their paper is shown to reduce to the symmetrized 

alThis paper is based on the Ph.D. thesis of this author sub­
mitted to the Mathematics Department, Simon Fraser 
University. 

b)Supported by NRC Grant No. -3993. 
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canonical tensor in the Appendix of this paper. Brill 
and Wheeler10 arrived at the same result in the the four­
component formalism, though in a less rigorous way. 

Following the tradition of previous papers, 2-1 we in­
vestigate here the solutions such that the metric is 
static, the electromagnetic field is just electrostatic, 
and the Dirac field is stationary in the wave-mechani­
cal sense. From the Dirac field only "spin-up" elec­
tron-type waves are chosen. However, unlike previous 
investigations the solutions are not at all plentiful. Only 
one solution is found which corresponds in'some sense 
to an electron plane wave propagating along the x 3 direc­
tion. Furthermore, under the assumptions given, the 
nonexistence of "square-integrable" solutions is con­
cluded. Physically speaking, the "mystic" spin seems 
to have an impact on the symmetry of the space-time 
geometry and the static electro-gravitational setting is 
too restrictive for the existence of physically interest­
ing solutions. There are analogous results regarding 
the nonexistence of neutrino solutions to the combined 
Weyl-Einstein equations. 11-13 In particular, Madorel1 

has shown that there exist no static axially symmetric 
neutrino fields in general relativity, while Wainwright12 

has shown that there exist no nontrivial neutrino fields 
of energyclass E2 with static metric. 

2. PRELIMINARIES: SPINOR CALCULUS 

The purpose of this work is to investigate the com­
bined Dirac-Einstein-Maxwell equations. A natural 
formalism for these equations is the two- component 
spinor calculus, which has been extensively described. 14 

Our definitions and notations: Let i'v[ denote the semi­
Riemannian space-time manifold with signature - 2. 
Spinor indices will be denoted by capital Latin letters, 
with conjugate indices dashed, and take on the values 
1,2. Small Latin letters denote space-time tensor in­
dices ranging from 1-4, and unless otherwise noted 
Greek letters denote spatial tensor indices ranging from 
1-3. Invariant tensor or spinor indices are denoted by 
parentheses: Thus X(AB) is a spinor invariant, while 
1J(mn) is a tensor invariant. Y AB denotes the antisym­
metric spinor metric, and a mA'B the spin matrices, 
Spin indices are raised and lowered using y: 

XA=yABXB' XA=XBYBA' YAB=y1/2exP(iIJ)(_Ol ~). 

Copyright © 1977 American Institute of Physics 2026 



                                                                                                                                    

Further, 

YAB=-yB,A=OB A , 

the Kronecker delta. 

Let the solution of the combined equations be valid on 
the manifold M, and suppose M is obtained from M by 
excising the singularities. Then the solution is valid 
globally over M. Geroch15 has shown that for a Coo non­
compact space-time manifold N the global existence 
of spinor fields on N is equivalent to the existence of a 
global field of orthonormal tetrads. If Xl (n) denotes such 
a tetrad field, the general relativistic spin matrices 
may be defined by 

alB 'C = X I (n) a(n)B'C , 

where a(n)B'C are the usual special-relativistic Pauli 
matrices up to a real conformal factor. An equivalent 
approach is to require that aIA'B, glj, yAB satisfy the 
following axioms16 : 

Axiom I: aIA'B =aiBA' ; 

Axiom II: am
B' AanB'C = - tgmnYAC + tiT/mnsTaSB'AaTB'C' 

where T/mnsT denotes the Levi-Civita tensor. Axiom I 
requires the spin matrices to be Hermitian, and Axiom 
II may be looked upon as the generalized commutation 
relations. The most important algebraic consequences 
of these axioms are the following: 

(] mE 'AUnBIC - O'n B'A(] mB'e == iTlmnsr(] sB'AU T B'G, 

(]mB1AcrnB'A ==gmn, 

amB'AamC'D = YB'C'Y AD, 

amB'Aa"B'CaT D'C = t(gnTa mD'A - gmTa"D'A 

+gmnaT D'A - iT/mnri>a"D'A)' 

Covariant differentiation of spinors is introduced 
through spinor affinities analogous to the usual 
Christoffel symbols. For a covariant 1-spinor SA, 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

SAlm = SA,m - rB Am SB' (2.7) 

The requirement that the usual correspondence be­
tween tensors and spinors be preserved under covariant 
differentiations motivates 

Axiom III: amA'B In = O. 

The most general expression for the spinor affinities 
consistent with Axiom III may be shown to be 

rA' 1 [ mA'B J m} nA'B 
C'7< = - "2 amC'B a ,k + Ink a amC'B 

(2.8) 

Here y1/2 is the real conformal factor in the spin 
metric y AB, E is a real constant, {,,';;} the usual 
Christoffel symbols, and the 4-vector ¢k remains to be 
interpreted. Under a gauge-type spin transformation 
ARs = ORS exp(iEa), 

(2.9) 

Together with the usual philosophy of minimal electro­
magnetic interaction, (2.9) provides motivation for 
identification of ¢k with the electromagnetic potential. 
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This choice is originally due to Infeld and Van der 
Waerden. iT This identification has an important mathe­
matical consequence. Using (2.8), we have 

(2.10) 

Therefore, in the presence of a nonvanishing electro­
magnetic field y AB Ik is not identically zero (even if the 
metric yAB is constant). 

3. THE COMBINED EQUATIONS 

The combined Dirac-Einstein-Maxwell field equa­
tions may be derived from a stationary action principle 
based upon the Lagrangian 

L =r--g[t(R - 41TF k'FkZ ) -16v21Ti(l2mxA'~A' 

(3.1) 

Here F k , '" ¢kll- ¢Zlk' units have been chosen such that 
c = G = If = 1, and c. c. stands for complex conjugation. 
For the independent fields appearing in L, we take 
¢k' X(fl j , XA, ~A' XA', ~A" The choice of the tetrad 
components X (f) j as the fundamental geometric variables 
rather than the more usual metric components glj is a 
character:istic feature of half-integer spin fields. 8 From 
(2.1), (2.8), the Lagrangian (3.1) involves the tetrad 
in a manner which cannot be expressed in terms of glj 
alone. The Euler-Lagrange equations which result 
from the variation of (3.1) may be written 

D1B '= a'A'BxA'I'- (min) ~B = 0, (3.2) 

D2B '= a'A'B ~A'I' + (min) XB = 0, (3.3) 

M' '=Fi~mlm - 2v2j' = 0, (3.4) 

Qlj '= Glj + 81T(- FI 'Fj , + t glj FabFab + M lj ) = O. (3.5) 

The current j' is given by 

j' '=Ea'll'A(xAXB' + ~A~B'), E,=fue. (3.6) 

Here e, m represent the "bare" charge, mass param­
eters of the wave field. M/j denotes the contribution of 
the wave fields to the energy-momentum, and is given 
explicitly by 

M lj = _. (i/n) (aIB'AxAxB' Ij + ajB'AxAxB'11 - a l B'A~A~B'll 

(3.7) 

A summary of the derivation of (3.5), (3.7) is given in 
the Appendix. For convenience in later work, we also 
write the (til = 0 equations as 

GIJ = - 81T(Ell + M lj ) = - 81TTI} • (3.8) 

One may show that the Dirac equations11 imply M'I, = 0, 
and that the Dirac and Maxwell equations together give 
Til Ii = O. 

Equations (3.2)-(3.5) contain 24 unknowns: 10(glj) 
+4(XA)+4(~A)+4(¢k)+1(e)+1(m). Because of the 
freedom of imposing a gauge condition on the electro­
magnetic field and four coordinate conditions, there are 
27 equations: 10(Qll) + 4(~) + 4(D1B) + 4(D2

B) 
+ 4 (coordinate) + 1 (gauge). The number of independent 
equations is reduced by the five identities: 4(Qlj IJ = 0) 
+ l(~lk = 0). Thus we have 22 independent equations 
for the 22 unknown functions and two unknown constants. 
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This system may be made determinate by prescribing 
values for e, m. In addition to the 22 independent equa­
tions, which must hold locally everywhere, there may 
be global restrictions on the solutions. For example, 
for solutions with finite total charge, one might require 
that this charge be e. Such a condition appears in Das 
and Coffman. 7 In view of the scarcity of integral con­
servation laws in general relativity, this condition 
seems a good candidate to replace the usual square in­
tegrability of wavefunctions. Such additional global 
requirements could affect the arbitrariness in the choice 
of e, m. For our static solutions, we shall see that e 
and m cannot be chosen independently. 

4. STATIC SOLUTIONS OF THE COMBINED 
EQUATIONS 

We wish to find exact solutions of the combined equa­
tions such that the electric and gravitational fields are 
static and the Dirac field is stationary in the wave­
mechanical sense. For a static metric, we use the 
normal form 

(4.1) 

The metric of any static space-time may be written 
locally in the form (4.1), since the metric of a 3-space 
may always be put in normal form. 18 With this choice, 
Axioms I, II will be satisfied provided the spin matrices 
are taken to be a conformal factor times those of special 
relativity: 

h-1/2 
(~ ~), k-

1/2 
(0 .) a1A'B= -- a2A'B=__ -t 

v'2 v'2 i 0 ' 

1-1/2 
(~ _01) a4 A'B = r1/2 e ~ (4.2) 

3A'B 
a =,fX ,fX 0 1 

We set Y AB = exp(ie)(~1 t). By fixing the electromagnetic 
gauge, one may take e = O. Corresponding to (4.1), we 
assume for the electromagnetic potential 

(4.3) 

Thus for mathematical simplicity our model does not 
take account of the magnetic field. 

One form in which Dirac's equations are traditionally 
written in special relativity is19 

(4.4) 

Here {3 and the components of a are certain complex 
constant 4 x 4 matrices, and If! represents the 4-compo­
nent wave field. Comparing our Dirac equations with 
(4.4) for the case of special relativity, we find 

1f!1 = - (X2 + i~2')' 1f!2 = x1 + i~1" 

1f!3 = - (X2 - i~2')' 1f!4 = X1 
- i~1" 

In particular, for a pure 1f!1 wave field we have 

(4.5) 

X1=~1=0, X2=i~2" (4.6) 

For our static case, this corresponds to a "spin-up" 
pure electron wave. 

Using (2.8), (3.2), (3.3), (4.1), (4.2), the general 
Dirac equations for a static metric and electrostatic 
Maxwell field may be written 
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(4.8) 

h-1/2~2'.1 +ik-1/2~2'.2 +1-1/2~1'.3 +j-1/2~1'.4 

+ [1-~2 (Inhkf).3+iEr1/2¢ ] ~1,+Hh-1/2(lnklj).1 

+ik-1/2 (lnhlj).2] ~2'=- mx1, (4.9) 

h-1/2t z·k-1I2t 1-1/2 t +f-1/2t 
~l'rl- t;,1',2 - "2',3. "2',4 

+ t[h-1/2 (lnklj).1 - ik-1/2(lnhlf).2] ~1' 

- [l-~ 2 (Inhkj).3 _ iEr 1/2 ¢ ] ~2'= _ mx2. (4.10) 

Using the pure 1f!1 conditions (4.6), these equations 
become 

h-1I2 ~, + ik-1/2 ~, + l[h-1/2 (Ink1j) 2.1 2.2 4 .1 

+ ik-1/2 (Inh1j). 2] ~2' = 0, 

(In~2').4 = i(mj1/2 + E¢), 

In~2'= - t lnhkj + X(x1, x2, X4), 

(4.11) 

(4.12) 

(4.13) 

where X is an arbitrary function. We look for solutions 
satisfying the separability condition 

1f!1 =S(~)P(t), t=X4. 

Using (4.14), (4.12) gives 

P = exp(- iet), 

j1/2 = (l/m)(e - E¢). 

(4.14) 

(4.15) 

(4.16) 

Making the scale transformation t' = (elm) t and drop­
ping primes, we have e =m. Then (4.13) may be 
written 

~2,=(i/2)Sexp(-imt), S=(hkj)-1/ 4B(x1,x2), (4.17) 

where B is arbitrary. Thus the general separable pure 
1f!1 solution of the static Dirac equations is given by 
(4.15), (4.16), (4.17), and the general solution of 
(4.11). 

For a static solution, the first three Maxwell equa­
tions are identically satisfied, and if one assumes the 
"balance" condition 

e=±m, (4.18) 

it can be shown that M = 0 iff Qu = O. One may also 
show that the assumption e =Km, IKI * 1, K* 0, leads 
to an inconsistency between M = 0 and Q44 = 0, so that 
(4.18) does not constitute an additional assumption 

For the field equations, it is convenient to use the 
metric form 

(4.19) 
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where gaa is in normal form. With our static pure iJ!t 
assumptions, the Qa a = 0 and Q44 = 0 field equations 
become 

Raa -1ga a(- eW A2w +1 eW Xtw + 87Tm 1 s12) = 0, 

R44 + t e2W "A1w + 47TmeW IsI2 = o. 
(4.20) 

(4.21) 

Here X2w=gaawlaa, X1w=gaaw,,,,wa, andRaa and other 
barred quantities refer to the positive definite 3-space. 
From (4.19) it follows2o that R44 = - t e2w Azw. Then 
combining (4.20), (4.21), 

(4.22) 

which implies the associated 3-space is flat. Then we 
write (4.19) as 

<P = - e-w dxa dxa + eW dt2• 

The Q44 = 0 field equation may now be written as 

W aa -1w aW a = 87Tme-w Is12. . ,. 
Combining (4.17), (4.23), we have 

S=ewl4 B(X1,x2). 

The remaining Dirac equation (4.11) now becomes 

(4.23) 

(4.24) 

(4.25) 

S-1S 1 - tw 1 + i(S-1s 2 - tw 2) = O. (4.26) , . . . 
We have not yet discussed the Qa4 = 0 field equations. 

For our static case, these equations reduce to Ma4 = O. 
From (3.7) these equations become 

IsI2k-1/2(h-1h _/-1'1 )+2ih-1/2 (S5 -5S )=0 .2 ,2 • t ,1 , 

S5 3 - 5S 3 =0. . . 

(4.27) 

(4.28) 

(4.29) 

(4.29) is identically satisfied by (4.25) and the reality 
of w. Combining (4.26)-(4.28), 

ew/2=IP(x3)/B(x1,x2)1, (4.30) 

where P is arbitrary. (4.26) is then satisfied iff B is 
analytic. (4.24) implies I B I = const, and we set B = 1. 
Then W = w(x3), and our remaining Q44 = 0 equation 
becomes 

(4.31) 

Setting V = e-w 12, the general solution is found to be 

(4.32) 

where P represents the Weierstrass P-function,21 with 
invariants g2 and g3, and C1, C2 are arbitrary real 
constants. The periodic nature of the Weierstrass p­
function gives rise to singularities in the geometry 
which are probably true singularities. For example, 
using the diagonalized tetrad 

xl(a) =/il(,,) ew/2 , Xiw =/i1(4) =/i14e-w12, (4.33) 

one finds R(4334) =R4334 =ew/2 , which diverges as one 
approaches a zero of the p-function. Furthermore, the 
total charge for such solutions, given by 

Q = Iv3 in4 vgd3x, (4.34) 

diverges. Here n4 represents the unit normal to the 

2029 J. Math. Phys., Vol. 18, No. 10, October 1977 

hyper surface V3• This work may be summarized in the 
propositions: 

Proposition 1: A class of exact, self-consistent solu­
tions of the combined Dirac-Einstein-Maxwell field 
equations (3.2)- (3.5) with static electro-gravitational 
fields is given by 

<I> = - e-w dxa dx" + eW dt2, 

e-w/2 =_ (3/27Tm)P(x3+c21 g2=0, g3=C1); 

X2 = i~2'= - m exp[(w/4) - imt], 

X1 = ~1 =0, ew/2 = 1 ±fucj>, e =± m. 

(As mentioned previously, the w- cj> relation above is 
the Weyl-Majumdar relation. Unlike the Majumdar 
solutions2o to the Einstein-Maxwell equations. the Dirac 
field here completely specifies the geometry.) 

Proposition 2: There does not exist a maximally ex­
tended solution of the combined Dirac-Einstein­
Maxwell equations (3.2)-(3.5) with nontrivial Dirac and 
Maxwell fields satisfying: (i) static space-time; (ii) 
algebraic spinor structure given by Axioms I-Ill, with 
minimal electromagnetic interaction; (iii) purely elec­
trostatic Maxwell field; (iv) space-time separable pure 
iJ!t Dirac field; (v) finite total charge. 

APPENDIX: VARIATIONAL DERIVATION OF 
THE EINSTEIN EQUATIONS 

The equations Qlj == 0 may be derived from the 
Lagrangian (3.1) either by the general method of 
Rosenfeld, 8 or directly by varying the tetrad ~(f) l' Here 
we use Rosenfeld's elegant approach. Let l = L - R..j - g , 
and define 

(A1) 

Variation of (3. 1) with respect to the tetrad then leads 
to the field equations 

eii =_ 87TT i j, 

where we have used , 
(A2) 

(A3) 

Let Q", denote the various nongravitational field varia­
bles, and l = vf::g. Let Qa III represent the usual 
covariant derivative for tensor fields, and for spinors 
define XAIII =XAI 1_ iecj>lxA, where XAI 1 is the spinor 
derivative of Sec, 2. For the Lagrangian (3.1), Z de­
pends upon the matter fields only through the Qa and 
their first covariant derivatives Qallj, and is invariant 
under both Lorentz and general coordinate transforma­
tions. Then Rosenfeld shows 

Tlj - 1 [2L j ij jkl] -167T a-Q Qall -Lg -R Ilk , 
Ctlli 

(M) 

where Rjki depends upon the transformation properties 
of the fields Qa and is defined in Rosenfeld. One finds 
that (A4) may be written 

Tlj =Eii +Mli , 

where 

Eli = - FikFjk +t g iiFabF ab, 

M.J. Hamilton and A. Das 
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MJ __ 1_ [~ J Jkl ] 
- l61T oQal1 Qal - Ra Ik , 

(A7) 

with Qa denoting the Dirac fields. After considerable 
calculation, one finds 

1 Jkl 
l61T Ra Ik 

i J ('B'D-k kB'D I )( A C') = 2..f2 (J C'D a U·OB'A - a a B'A X X Ik 

i JC'D( IB'AcI' kB'A 1)( ) + 2J2 a a B'D- a a B'D ~A~C' Ik + c. c. 

(A8) 

In another formalism, this expression appears in 
Bergmann and Thomson. 9 However, considerable 
simplification is possible by using the Dirac equati;?ns. 
Defining the canonical energy-momentum tensor Mil 

as usual by 

M'J=_l_ oLm Q J_gIiL L -=L+41TFkIF (A9) 
l61T oQal1 al m' m kl' 

one finds 

R Jkl - .!.(.-.., M-Jl) 
a Ik - 2 lVr - • 

Combining (A7), (A10), we find 

MiJ =1(ifi
' 

+MJI), 

(A10) 

(All) 

the symmetrized canonical energy-momentum tensor. 
(A2), (A5), (A6), (All) then give the desired field 
equations. 
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The N-quantum approximation in the Bronzan-Lee 
extended-source static model 
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The Bronzan-Lee model of a soluble field theory with vertex function is analyzed from the viewpoint of 
the N ·quantum approximation. Determination of the Heisenberg field expansions in the single·source one· 
and two·meson sectors of the model yields three scattering amplitudes, a production amplitude, and the 
renormalization constants in agreement with other derivations. The solutions to one algebraic and three 
linear integral equations, the mathematical complexity of which is reminiscent of the Tamm-DancofT 
eigenvalue approach in the Lee model with two nontrivial sources, are required for this purpose. Finite 
results compatible with the conventional renormalization program are obtained from the field expansions 
and the equations of motion by prescribing that each normal·ordered product of in·fields in an expansion 
have the same quantum numbers as its Heisenberg field and, so that all relevant terms are included for a 
sector, all possible combinations of in·fields consistent with the quantum numbers of the sector must 
occur. In general, this recipe is substituted in place of power counting, which evidently is inappropriate in 
higher sectors of the Lee model. The investigation of one· and two·meson exchange interactions of two 
sources in the Lee model via the N ·quantum approximation has been carried out, and similar work is 
contemplated in charged scalar theory and the classic Chew-Low model. 

I. INTRODUCTION 

The N -quantum approximation (NQA) was proposed 
by Greenberg l as a nonperturbative framework of 
calculation which presumably upon further development 
would provide experimental predictions from theories 
of strong interactions. In the application of the NQA to 
a specific quantum field theory, one expresses the 
Heisenberg field operators as finite-degree normal­
ordered expansions in an irreducible set of in-fields, 
and then substitutes them into the field equations where 
renormal ordering and comparing of different normal­
ordered products of in-fields yields a set of coupled 
equations for the desired c- number expanSion coef­
ficients. These, at first, unknown coefficients are 
essentially vertex functions, or scattering and pro­
duction amplitudes relevant to the various processes 
allowed by the theory. 

Since there are relatively few published papers which 
use or discuss the NQA, it is convenient and perhaps 
worthwhile to indicate briefly the types of examples 
already considered, the complications encountered 
and the successes achieved in the evolution of the 
method. Greenberg's original effort gives a general 
introduction to the NQA and uses the Ward-Hurst­
Thirring; (WHT) mOdel to study, in first order of the 
approximation, the technical problem of making the 
scheme compatible with the renormalization program. 
A difficulty with the renormalization procedure in this 
application was pointed out by Halprin3 and subsequently 
corrected by Greenberg, 4 but only a partial rationale 
for adopting this particular procedure was given. A 
version of the NQA for the description of bound states 

alWork supported in part by Grant No. GU -3774-158 of the Na­
tional Science Foundation. 

blWork supported in part by a Resident Study Fellowship from 
the IBM Corporation. 
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in relativistic quantum field theory has been given by 
Greenberg and Genolio, 5 who treat the deuteron in 
pseudoscalar-meson theoryo For this purpose, they 
substituted Heisenberg field expansions with the smal­
lest nontrivial number of normal-ordered terms into 
the field equations and obtained the simplest manifestly 
covariant equation for the deuteron wave function. In 
the weak-binding, nonrelativistic limit where renormali­
zation effects vanish, this equation reduces to a 
Pauli-Schrodinger equation with the quantitative struc­
ture expected of pseudoscalar-meson theoryo In another 
application6 the NQA yields the formal exact solution 
of the vector derivative coupling modeF in a direct way, 
and makes explicit that the 5 matrix is unity. 

Some additional inSight into the NQA was obtained 
when PagnamentaB applied it to the V and ve sectors 
of the Lee model and the neutral scalar field in inter­
action with non recoiling nucleons. To first order of the 
approximation he found some difficulties with the re­
normalization in the former case, such as the vanishing 
of the VNe vertex function in the point source limit. 
Upon resorting to a renormalization scheme similar to 
that used by Greenberg and in view of the simpliCity 
of the Lee model, these difficulties were overcome and 
correct results were establishedo The possibility of 
successfully coping with dynamical bound states and 
resonances from the viewpoint of the NQA was demon­
strated on the examples of the ve bound state and the 
unstable V particle. In the case of the neutral scalar 
field model, the mass renormalization and expansion 
coefficients are exact in the first order N -quantum 
solUtion, while the wavefunction renormalization 
constant Z is approximate. In each higher order the 
coefficients are exact, and a better approximation to 
Z is obtained. Halprin9 studied the problem of assuring 
that the equations for the c-number coefficients are 
solved in a manner consistent with renormalization, 
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and attempted to relieve the troubles encountered by 
Greenberg and Pagnamenta by devising a systematic 
method for dropping and/ or retaining terms when 
solving these equations. He did this by a coupling 
constant power-counting technique which in effect 
demands that, in the solution of a particular N-quantum 
coeffiCient, terms are not retained which involve 
higher order processes. This worked quite well when 
applied to the V and ve sectors of the Lee model but 
encountered some difficulties in the WHT model. 'Thus, 
power counting provides a guide to the manner in which 
the equations for N-quantum coefficients can be solved 
by dropping unwanted terms, but apparently it cannot 
be applied straightforwardly in all cases. Thus, it 
remains that the principal shortcomings of the NQA lie 
in not knowing when to terminate the field expansions 
and how to solve the equations for the c-number co­
efficients in a manner consistent with the renormaliza­
tion. 

The purpose of this paper is to gain further working 
experience with the NQA by applying it to the lowest 
nontrivial sectors of the Bronzan-Lee model. 10 This 
model, although admittedly crude, was originally set 
up to prOvide some insight into the dynamics of strong 
interactions. Finite results consistent with renormali­
zation are obtained from the field expansions and the 
equations of motion in a straightforward way, Each 
term in a field expansion is required to have the same 
quantum numbers as its Heisenberg operator, and all 
possible normal ordered products of in-fields relevant 
to a given sector are included. In view of the selection 
rules of the model, these sectors are completely solved 
in terms of three nonsingular integral equations of the 
type encountered in the Tamm-Dancoff solution of the 
2V sector of the Lee model. 11 By contrast, in the WHT 
model one encounters the mathematical complications 
of having to solve a quadratic integral equation in 
lowest order and nonlinear integral equations in 
higher orders. 

Section II describes the Bronzan-Lee theory and gives 
a brief survey of its literature. It then goes on to set 
up the field equations and identify the irreducible set 
of in-fields for the case of stable particles and no bound 
states. Section III is concerned with the field expan­
sions and S-matrix elements in the V and U sectors. 
Equations for the N -quantum coefficients are established 
in Sec. IV, and the well-known V sector is solved. This 
section also includes a diagrammatic representation 
of the equations. In Sec. V the solutions to three linear 
integral equations lead to a complete description of the 
U sector. Some conclusions and further applications 
of the NQA are discussed in Sec. VI, 

II. EQUATIONS OF MOTION AND ASYMPTOTIC 
FIELDS 

The dynamical structure of the Lee model has been 
generalized by Bronzan, who introduced a third static 
and spinless fermion U and coupled it to the original 
V particle and the neutral scalar boson e. This modifi­
cation was implemented in terms of a second Yukawa­
type interaction which describes the virtual emission 
and absorption of a V and a e by the U. In the Lee 
model the heavy N particle has no internal states, 
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and the only virtual elementary processes allowed by 
the selection rules are the emission and absorption 
of an N and a e by the V, Thus, there are no radiative 
corrections to the vertex part, and one diagram ap­
pears as the correction to the V -particle self-energy. 

In contrast, the Bronzan-Lee model has a nontrivial 
vertex function renormalization in addition to the 
renormalizations already underlying the Lee modeL 
From the conventional diagrammatic viewpOint this 
function embodies all proper graphs which contain one 
U- and one V-particle line, plus one external meson 
line. The vertex function, the U- and V-particle 
propagators, the off-energy-shell scattering amplitude 
for a e incident on a V, and all the renormalization con­
stants were established by Bronzan via the Wigner­
Brillouin perturbation series approach to transition 
matrix elements, The addition of a e-particle to the U 
sector leads to a four- body sector involving the elastic 
scattering of a e by the U particle, and the production 
of two and three mesons in association with a V and 
N particle, respectively. This sector has also been 
analyzed by Bronzan, 12 who found that the corresponding 
dynamical equations reduce to the solution of a single 
Fredholm integral equation in one variable. An analo­
gous situation occurs in the vve sector of the Lee 
modeL 13 

Besides being a very valuable framework for the 
discussion of the renormalization problem and off­
energy- shell techniques, the Bronzan-Lee model 
has importance as a general testing ground for dynami­
cal questions and various methods of calculation in 
field theory. In the former category, we mention the 
paper of Liossatos, 14 which demonstrates, among other 
things, that, in the limit where the wavefunction re­
normalization constant of the V particle vanishes, the 
Bronzan-Lee model is equivalent to a composite theory 
containing only Fermi-type couplings among the U, 
N, and e particles. More recently, Choudhury, 15 fol­
lowing the procedures of Maxonl6 and Scarfone, 17 has 
applied the Lehmann-Symanzik-ZimmermannI8 

(LSZ) formalism to the two lowest nontrivial sectors 
of the Bronzan-Lee model and derived all the T 

functions and the relevant scattering and production 
amplitudes. All the renormalization constants were 
obtained and found to agree with the results first 
calculated by Bronzan, and subsequently also by 
Liossatos. An independent but related effort by Chen­
Cheungl9 in a similarly extended Lee model deals 
with the renormalization problem from a Green' func­
tion approach. 

Nonrelativistic versions of the Bronzan-Lee model 
have been studied by North, 20 and by Fonseca and 
Shanley. 21 The former author solves the model in 
terms of the old-fashioned strong-coupling theory of 
Wentzel and suggests a procedure for obtaining a 
bootstrap solution, while the latter authors use the 
theory as a framework for gaining insight into four­
body scattering systems. 

For future purposes, it is convenient to treat all 
heavy particles as bosons. In so far as predictions of 
the theory are concerned the distinction between heavy 
fermions and heavy bosons is irrelevant providing the 
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interactions are spin-independent, and we only consider 
states involving at most one heavy particleo In accor­
dance with the renormalized Hamiltonian which de­
scribes the particle processes previously mentioned, 
we write the following set of Heisenberg field equations 
for the Bronzan- Lee model: 

Z u (i :t - mu + omu) U(t) = AZ 1 I f(w)A(k, t)V(t)d3k, 

Z v (i ~ -m + 15m) V(t) = AZ 1 I f(w)A +(k, t)U(t)d3k 

+ gI f(w)A(k, t)N(t)d3k, 

(i ~ -m) N(t) =g I f(w)A +(k, t)V(t)d3k, 

(i ~ -W)A(k, t) = AZd(w)W(t)U(t) + gf(w)W(t)v(t). 

(la) 

(lb) 

(lc) 

(ld) 

The operators U(t), V(t), and N(t) are the renormalized 
field operators that asymptotically annihilate U, V, 
and N particles, respectively. Their Hermitian con­
jugates are the corresponding creation operators. For 
simplicity, both V and N are assigned the same energy, 
i. e., mass m, while U has the energy mu; Zu 
and Z v are the U - and V -field wavefunction renormaliza­
tion constants; omu and om are the mass renormaliza­
tion counterterms, while the parameters A and g are, 
respectively, the uve and VNe renormalized coupling 
constants; Zl is the uve vertex renormalization con­
stant. The operator A (k, t) asymptotically annihilates 
a meson of 3-momentum k and relativistic energy 
w(k) '" w = (k2 + J.L2)1/2, where J.L is the rest masso The 
real quantity f(w) is an abbreviation for the ratio 
p(W)/(21T)3/2 (2W)1/2, where pew) is an w-dependent 
cutoff function that guarantees convergence of inte­
grations over w in the high- energy limit, and prevents 
the existence of any ghost stateso 

Equal-time commutation relations are given by 

fUel), u+(t)]=zd" , [V(t), v+(t)l=Zi, 

[N(t),W(t)] = 1, [A(k, t),A +(k', t)]= o(k -k'). 
(2) 

All other possible commutators vanish. The Heisenberg 
equations of motion are based on selection rules which 
allow the following operators to be constants of the 
motion: 

B(t) = Z uu+(t)U(t) + Z v V+(t) V(t) + W(t)N(t), 

Q(t) = Zuu+(t)U(t) - W(t)N(t) 

+ I A+(k,t)A(k,t)~k. 

(3a) 

(3b) 

Therefore, in the Tamm-Dancoff method of solution 
the state vector space is decomposed into mutually 
nonoverlapping subspaces which are labeled by the 
discrete values of Band Q. Analogously, in the NQA 
we may associate a pair of quantum numbers with a 
Heisenberg field for all values of the time t. This is to 
be expected since the Band Q values of a state change 
accordingly under the action of such field operators. 
The operators U(t), V(t), N(t), and A(k, t) have (B, Q) 
values given, respectively, by (-1, -1), (-1,0), 
(-1,1), and (0, -1). Annihilation operators have quan­
tum numbers of the opposite sign. In contrast to the 
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Tamm-Dancoff formalism, where a physical state 
is expanded in terms of all bare states having the same 
Band Q values, here individual contributions to the 
expansion of a Heisenberg field in a complete set of 
in-fields have the same quantum numbers obtained by 
adding the individual Band Q values of the correspond­
ing in-fields. 

It is advantageous to express the equations of motion 
with respect to the Fourier-transform variables. In 
this way, we obtain the following coupled field equa­
tions: 

Zu(H - mu + omu)U(H) = AZ1 I I f(w)A(k, G)V(H - G)d3kdG, 

(4a) 
Z veE - m + om)V(E) 

=AZ1 I I f(w)A+(k, H)U(H +E)d3kdH 

+ g I I f(w)A(k, G)N(E - G)d3kdG, 

(F - m)N(F) =g I I f(w)A+(k, G)V(F + G)~kdG, 

(G - w)A(k, G) = AZJ(W) I V+(H)U(H + G)dH 

(4b) 

(4c) 

+ gf(w) I W(E)V(E + G)dE. (4d) 

As previously stated, the central idea underlying 
the NQA requires that field equations of a specific 
theory be solved by expressing each field operator as 
an approximate expansion in terms of an irreducible 
set of asymptotic operators that create or destroy 
stable particles. Hence, in the first step we must 
identify the asymptotic fields. This is done by con­
sidering the possible energy spectrum due to the inter­
actions in the theory. If we assume U and V are stable 
elementary particles so that each field has a single 
in-field limit defined in the LSZ sense, and if there 
are no bound states to account for, then the four in­
fields Uln , Vln , N ln , and Aln(k) constitute an asympoti­
cally irreducible set. The commutation relations as­
sociated with these operators have the free-field form 

[Uln, UI.]=I, [Vln' VIn]=l 

[Nln , NIn]=l, [AI.(k), A;.(k')]=o(k-k'), 
(5) 

while all other commutators vanish. The presence of 
bound states would require independent in-fields to 
complete the present set. Since the asymptotic condi­
tion makes sense only for stable objects, unstable 
particles must be regarded as resonance complexes 
which in the remote past were separate stable particles 
that will in the far future again become these particles. 
For example, an unstable U particle will show up as 
a resonance in the ve scattering cross sectiono In any 
case, there would always only be four Heisenberg fields 
in the theory. 

III. FIELD EXPANSIONS AND S-MATRIX ELEMENTS 
IN THE (NONTRIVIAL) ONE-HEAVY-PARTICLE 
SECTORS 

Having defined a complete set of asymptotic fields, 
we now develop the expansion for each field operator 
in the U- and V-particle sectorso We require that 
each term in an expansion have the same quantum 
numbers as its Heisenberg operatoro In addition, so 
that all pertinent terms are included for a sector, 
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the series must contain all possible combinations of 
in-fields consistent with the quantum numbers of the 
sector. This is reminiscent of the Tamm-Dancoff 
procedure of superimposing all bare states having the 
quantum numbers of a given physical state, Thus, the 
in-field expansions for the Fourier-transformed fields 
in the V and V sectors are written in the normal-ordered 
forms 

V(H) = I5(H - mU)Utn + I u21 (w)I5(H - m - w)Vt~tn(k)£i3k 

+ I I U22 (W' w' )15(H - m - w - W')NlnAln(k)Aln(k') 

xd3kd3k', (6a) 

V(E) = I5(E - m)Vln + I vlI(w)II(E - m - w)NtnAln(k)d3k 

+ I V21 (w)15 (E + w - mu)A In(k)U l.d3k 

+ I I V22 (W, w')I5(E + w - w' - m)AIn(k)Vln 

x A I.(k' )£i3k£i3k' 

+ I II V23 (W, w', w")I5(E + w - w' - w" - m) 

XA~n(k)NlnAln(k')Atn(k")d3kd3k'd3k" , (6b) 

.'l(F) = I5(F - m)NI • + I n l1 ((.t!)I5(F + w - m)A ;n(k)Vlnd3k 

+ II 1l 12(W, w')15(F + w - w' - m)A~.(k)NIa 

XA ln(k')d3kd3k' + I I 1l21(W, w')I5(F + (.t! + W' - mu) 

x A~n(k)A+ln(k')Uind3kd3 k' 

+ III 1l22 (rJ.!,w',w")I5(F+w+w' -w" -m) 

XA ~n(k)A in(k' )VtnA t.(k" )£i3kd3k' £i3k" 

+ I I I I n23 (w, w', w"w''')I5(F+ W +w' - w" - w'" - m) 

x A i.(k) AI.(k')Nt~tn(k")A tn(k" ')d3kd3k' d3k" £i3k'/f, 

+ I 0!12(W, w")I5(G - w')Ni.Nt~tn(k')£i3k' 

+ 0!21(w)I5(G + m - mu) 

(6c) 

XVI.V i.+ I 0!22(w,w')I5(G -w')VInV inA ln(k')£i3k' 

+ I (l23(W, w')I5(G + w' + m - mulA I.(k')Ni.V1n£i3k' 

+ II 0!24(W, w', w")6(G - w' - w")VIn 

XNI~I.(k')A 1.(k")£i3k' £i3k" 

+ II0!25(w,w',w")6(G+w' -w") 

xA ~.(k')N;n V1n4 1.(k" )£i3k' £i3k" 

+ III 0!26(W, w', w", w"')I5(G + w' - w" - (.t!'II) 

XNi~i.(k')NI~tn(k")AI.(k"')~k' d3k" ~k''', (6d) 

In these expansions the coefficients u, lJ, m, and 
O! are labeled by two subscripts ij. The first of these 
indicates a V or V sector association, i = 1 for V, and 
i = 2 for V. The second index j denotes the number of 
the coefficient within a sector. With no bound states 
or unstable particles present, these expansions are 
complete for any analysis up through the V sector. 
All terms have the same quantum numbers as their 
corresponding Heisenberg field, and each is identified 
with one sector or the other. Note the omission of 
any terms involving more than one-heavy-particle 
creation or annihilation operator. In a future communi-
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cation this restriction will be removed by considering 
the NQA technique in the VN and VV sectors of the 
Lee model where a two-heavy-particle bound state is 
already known to exist in each case. As already men­
tioned, Greenberg and Genolio have demonstrated how 
the NQA could be applied to bound state problems by 
treating the deuteron in pseudoscalar-meson theory. 
Since their effort is confined to the one-meson ex­
change approximation, it is worthwhile, even at the 
static-model level, to gain experience with the NQA 
in a soluble two-heavy-partic1e system involving the 
exchange of two mesons. This may be the first example 
of an exact NQA calculation of this type, 

Diagrammatic representation of the expansion co­
efficients provides an illuminating means of interpreting 
both the expansion rules stated earlier and the struc­
ture of the equations for the c-number coefficients 
given in Sec. IV. We show in Fig. 1 graphs for the 
vve vertex V21 ' the ve scattering coefficient V 22 ' and 
the ve - Nee production coefficient v23 with the V leg 
off the mass shell in each case. The expansion coef­
ficients denote connected parts of matrix elements 
of the Heisenberg fields sandwiched between in-
states. Reading the diagrams from bottom to top, 
we can use the customary "+ if trick" to obtain retarded 
propagators, Double lines represent the off-shell 
Heisenberg fields while single lines at the bottom re­
present in-field creation operators, Single lines at 
the top symbolize in-field annihilation operators, and 
the black box itself stands for the coefficient. A delta 
function expressing over-all energy conservation ac­
companies each graph. Double lines not terminating 
on a box (see Fig, 3, for example) are interpreted 
as renormalized propagators. 

In the sectors under consideration there are four 
amplitudes. We determine a set of N-quantum coef­
ficients of interest for S-matrix elements describing 
the elastic scatterings Ne, ve, and Nee, and the 
production ve - Nee by contracting the N or V particle 
from the corresponding out-state. This leads to 

SN8~N8' = l5(k - k') + lim n12(w', w) exp[i(w' - w)t], (7) 
t~~ 

SV8~V8' = 15(k-k')+ lim V 22(W', w)exp[i(w' -w)t), (8) 
t-

u e' v 

VeE) 

FIG. 1. U-sector coefficients 
appearing in the in-field ex­
panSion of the Heisenberg V 
field. 
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SN88'-N8H8'" = t[o(k - k")o(k' -k''') 

+ /i(k - k"')o(k' - k")] 

(9) 

+ tW!1{n12 (W", W)/i(k' - kill) exp[i(w" - w)t] 

+ n 12 (w", w')Ii(k - k'll) x exp[i(w" - w')t] 

+ n12 (1.<J '" , w)/i(k' - k") exp[i(w'" - w)t] 

+ n12 (w''', w')/i(k - k") exp[i(w'" - w')t]} 

+ 2 limn23 (w'" , w", w', w) 
t- '" 

xexp[i(w'" +w" -w' -w)t]. (10) 

Before using the NQA technique to derive equations 
for the expansion coefficients, it should be noted that 
the ordering of the equal-time Heisenberg fields in the 
equations of motion is not unique. We choose to proceed 
with the ordering in Eq. (4) because the resulting 
equations for the coefficients are simple. This is re­
miniscent of dispersion theory where one's success 
in solving a matrix element of a current or field opera­
tor with respect to physical states depends on which 
particles are contracted. That there is a close cor­
respondence between the NQA and dispersion theory 
is seen in the connection between such a matrix element 
and the expansion coefficients of one field. On the 
other hand, a Tamm-Dancoff expansion coefficient 
couples, in general, not only to one or more NQA 
coefficients, but to NQA coefficients of different 
Heisenberg fields. 

By considering matrix elements of the field equa­
tions, it is possible to know beforehand which ordering 
will yield the simplest equations for the expansion 
coefficients. For example, consider writing Eq, (4a) 
as 

Zu(H-mu+omu) (0, inIU(H)I{3, in) 

= ~.zl L J f(w) < 0, in IA(k, G)I n, in> 
n 

X ( n, in I V(H - G) I {3, in ) d 3kdG (11) 

where the state I {3, in) has the quantum numbers of 
the U particle, and a complete set over in-states has 
been inserted on the right-hand side of the equation. 
Because of the selection rules in the theory, it follows 
that the only contribution to the sum over n comes 
from the one-particle e states. On the other hand, had 
we used the ordering V(H - G)A(k, G) in Eq, (4a), the 
intermediate states would have been the phYSical one­
particle V state and the Ne scattering states. The 
ordering which involves the simplest intermediate 
states is the desirable one. If the (3 state is taken to be 
the U -particle in-state I U in ), then the former case 
yields the expression 

Zuomu=XZlJf(w)V21(W)~k, (12) 

while the latter leads to 

Zuomu = XZ1 J f(w)a 21(w)d3k 

XZ1 J J f(w)a 23(w, w')vll(w')a3k~k'. (13) 

Compared with Eq, (12), it is obvious that Eq, (13) is 
a more complicated way of writing Zuomu' Similar 
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considerations of other matrix elements of the field 
equations show that the solutions in the sectors under 
discussion are found with the least mathematical re­
sistance when the field operators are ordered as in 
Eqs, (4a)-(4d). 

IV. EQUATIONS FOR THE N-QUANTUM COEFFICIENTS 
AND THEIR GRAPHICAL EQUIVALENTS: SOLUTION 
OF THE ONE-MESON V SECTOR 

Although the procedure for implementing the NQA 
has been described elsewhere, 1 we briefly reiterate 
it here for completeness of the exposition. To solve 
for the unknown c-number coefficients appearing in the 
in-field expansions of the Fourier-transformed Heisen­
berg field operators, the latter expressions are sub­
stituted into the equations of motion, and products of 
in-field operators on the right-hand sides are renormal 
ordered by means of their commutation relations. Then, 
by virtue of the property that different products of in­
field operators are independent, the resulting equa­
tions yield relations for the coefficients. Products of 
in-field operators associated with sectors higher than 
U are ignored in this process, 

Using this technique in the U-field equation of mo­
tion, we come upon Eq. (12) and two other equations, 
namely, 

Zu(w + m - mu + omU )u21(W) 

=XZJf(w) + Jf(W')V22 (W',w)a3k'], (14a) 

Z u(w + w' + m - mu + /im U)u22 (W, w') 

= t xz1(f(W)Vll (w') + f(w')v ll (w)] 

+ XZ1J f(W")V23(W", w, w')d3k". (14b) 

In a similar manner, the V -field equation of motion 
leads to 

Z ylim =g J f(w)n ll (w )d3k, (15a) 

Z y(w + /im)vu(w) =gf(w) + g J f(w', w) n12(w', w)d3k'. (15b) 

Z y(mu - m - w + om)v21 (w) =XZj(w) + 2g J f(w')n21 

X (w', w)~k'. 

Z y(w' - w + om)v22(w, w') 

= XZj(W)U21 (W') + gf(w')nll (w) 

+ 2g Jf(w")n22 (w", w, w')~k", 

Zy(w'+w" -w+/im)v23(w,W',w") 

= XZj(W)V22 (W', w") + tg[t(w')n12(w, w") 

+ f(W")n12(W, w')] 

+ 2g J f(w"')n23(w"', w, w', w")~k"', 

(15c) 

(15d) 

(15e) 

The renormalization constants, and the scattering and 
production amplitudes in the V and U sectors can be 
calculated without recourse to the a coefficients in the 
e-field expansion. However, to complete the goal of 
the NQA in the present case, we include the remaining 
equations for the coefficients that follow from the 
equations of motion for the Nand e fields. These are 

nll (w) = - gf(w)/w, 

(w' - w)n12(w, w') =gf(w)vll (w'), 
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(mu - m - w - w')n2,(w, w') 

= ig[f(w)v2,(w') + !(w')v2,(w)], (l6c) 

(w" - w - w')n22(w, w', W") 

= ig[f(W)V22 (W', W") + !(W')V22 (W, W")], (16d) 

(Will + w" - W' - w)n23 (w, w', w", Will) 

= ig[f(W)Z'23(W', w", w"') + !(W')V23 (W, w", w"')], (16e) 

a ll (w)=-gf(w)/w (17a) 

(w' - w)a'2(w, w') =g(W)l'll(W'), (17b) 

(mu - m - w)a 21 (w) 

= XZJ(w) + g(w) f ni',(w'h,(W')d3k', (17c) 

(w' - w)a 22(w, w') = XZJ(W)U 21 (W') + gf(w)ni',(w') 

+ g(w) f ni, (w" )V22 (W", W' )d3k", 

(m u -m-w-w')a23(w,w') (17d) 

= xZJ(W)Vi',(W') + g!(W)V21 (W') 

+ gf(w) f ni'2(w" ,w' )V2l (w" )d3k", (17e) 

(w - w' - w")a24(w, w', w") 

= XZJ(W)U22 (W', W") 

+ ig[f(w)ni, (w' h'll (w") + !(w )ni,(w" )v,,(w')] 

+ gf(w) f ni,(w"'h'23(W''', w', w")d3k"', 

(w" -w' -w)a2S(w ,w', W") 

(17f) 

(17g) 
= xz J(w )l'i, (w' )U2, (w") + gf(w )V22 «.J)' , w") 

+ !d(w)ni'2(w", w') + f ni2(w" , W')V22 (W'" , w" )~k''', 

(Will + wl! _ w'- w)a 26(w, w', w", w"') 

= AZJ(w)vi,(W')U22 (W ", w II') 

+ gf (W)V23 (W' , w", w"') + ig[f(w )ni'z(w", w')v" (w''') 

+ f(w)ni2(w"', W')Z·'ll(W")] 

+gf( )J *( "" ') ("" II "')d3k"" w n'2 w ,w V23 W ,w, w 0 
(17h) 

In view of the boundary conditions imposed on the 
Heisenberg field operators by the in-field expansions, 
we want only the retarded (+ iE) solutions of these 
equations. With this in mind, we proceed with the 
N -quantum solution of the theory up through the U 
sector. The analysis of the V and VB sectors of the 
Lee model by this means has already been given in 
Ref. 8, and the former case is included here for re­
ference. It is obvious that the V sector is unaltered 
by the additional X coupling, 

The well-known expression for Z v6m is obtained 
by combining Eqs. (15a) and (16a). We find 

Zv6m = - g2If2(w)dw/ w. (18) 

The coefficient vll follows from the separable integral 
equation that results when Eqso (15b) and (16b) are 
combined. Thus 

h(w)vl1 (w) =gf(w), (19) 

where h(w) is a function familiar from the classic work 
of Kallen and Pauli, 22 and defined by 

h(w) = Z vW + Z v6m + g2 f .f(w')d3k' /(w' -w - iE). (20a) 
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In view of Eq. (18), we may also write 

li.,w) =w[Zv+ g2 f .f(w')~k' /w'(w'-w-iEl]. (20b) 

In this way, we extract the zero of h( w) at w = 0 and 
obtain a function within the square brackets of Eqo 
(20b), which has a cut for J.L < W < 00 and no zero or 
poles in the cut plane. Use of Eq. (19) in Eqs. (16b) 
and (17b) leads to 

n,,(w, w') = a'2(w, w') =g2!(w)!(w)/(w' -w + iE)h(w'). (21) 

To finish off the NQA solution of the V sector, it 
remains to calculate the 5 matrix element for NB 
elastic scattering, and the V -field renormalization 
constant, Z v' The first of these follows from Eqs. (7) 
and (21), and is given by 

SNO-N9' = 6(k - k') - 211i6(w - w')g2.f(w)/h(w), 

where the Riemann-Lebesgue lemma has been used 
in the form 

lim[exp(iW t)/(W - iE)] = 211i6(W). 
t~~ 

(22) 

(23) 

The vanishing of h(w) at zero meson energy Signifies 
that the exact (renormalized) N8 scattering amplitude 
AN9 (w) defined via Eq. (22) by 

4. N9(W) = -411g2Wf2(w)/h(w) (24) 

has a pole derived from the V particle. The convention­
al requirement thatA N9(w) at w=O be equal to the 
Born amplitude -411g2J2(W) prefaced by g2 instead of 
the square of the unrenormalized coupling constant, 
g,;, leads to the desired expression 

(25) 

This is equivalent to setting the residue of h-'(w) at 
w =0 equal to unity or, alternatively, writing h'(O)= 1, 
where the prime denotes differentiation with respect 
to w. Substitution of Eq. (25) into Eq. (20b) leads to 
yet another version of h(w), namely 

h(w)=w (1 +~f~ Imh(~')dw'. ). (20c) 
11 "W'2(W -W-lE) 

Hereafter, the quantity in parentheses is represented 
by the function (3(w). 

We next construct the diagrammatic equivalents of 
the equations for the coefficients associated with the 
V sector. Again, this has already been considered in 
Ref. 8, but is repeated here in our notation for con­
venience. Equation (16a) for nIl is shown in Fig. 2. 
The same figure with the 8 particle instead of the 
.v particle off the mass shell gives the equation for 
u ll • The V-particle mass renormalization equation is 
depicted in Fig. 3 and follows from Eq. (15a). 
Equations (15b) and (16b), showing the coupling between 

v 

N 

I 
I 

I 
I 

I 

v 

8 N 

FIG. 2. Diagrammatic repre­
sentation of Eq. (16a) for nil' 
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v v 

= 

v 

v 
FIG. 3. V-particle mass renormalization given by Eq. (15a). 

V 11 and n 12 , are illustrated in Fig. 4. Equation (19) is 
given by Fig. 5. Analogous figures representing the 
connection between Vu and (lI12 follow from Eqs. (15b) 
and (17b) and the equality (lI12 = n12 • 

It is of interest to note here in the V -sector treat­
ment a comparison between objects of calculation in 
the NQA and dispersion theory. The latter approach 
commonly deals with matrix elements of a current 
operator which can be expressed in terms of the matrix 
element of the corresponding field operator and thereby 
makes connection with a c-number coefficient of the 
NQA. For example, the VN8 interaction factor, gf(w) , 
on the right-hand side of Eq. (17a) equals the matrix 
element (NI• I J I VI. ), where J is the 8-particle current 
operator J(t) at t = O. Here we define 

J(t) ='c (- i ~ + W}A(k, t) = [H,A(k, t)] + wACk, t), (26) 

where H is the renormalized Hamiltonian of the theory. 
Using Eq. (26) to express the matrix element of J in 
terms of the matrix element of A(k, 0), we learn that 
(lIu is equal to -gf(w)/w in agreement with Eq. (17a). 
Likewise one defines a V -particle current operator 

Jv(t)='c (-i ~ + m) Vet) = (H, V(t)] + mV(t), (27) 

and finds in dispersion theory23 that the VNe vertex 
function (0IJv IN8 1n ) is calculated to be -gwf(w)/h(w). 

N N N 

8 N 

=_ .fu!L + Z~I \~ E-m 

8\ N 
V , 

v V 
v 

8' N 8' N 

v 

N I 
I 

8 N 

FIG. 4. Equations coupling v11 and n12' 
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N N 8 N , 
8 N 
\ 

\~ = -.fu!L + Z~I + 
E-m 

V 

V 8' I, N 

v V 
V 

FIG. 5. Algebraic equation for vl1 obtained from the graphs in 
Fig. 4. 

The matrix element of the V -field operator at t = 0 
represents Vw and thus Eq. (27) implies that Vu is 
given by gf(w)/h(w), as expected. Again, in dispersion 
theory23 the matrix element (NI.IJIN8'ID) forNe 
scattering is found to be the negative of gf(w)f(w')/h(w). 
Therefore, Eq. (26) implies that (1112 is given as in 
Eq. (21). Of course, a dispersion relations calculation 
of the matrix element of a field operator itself with 
respect to the appropriate in-states will lead directly 
to the corresponding NQA coefficient. Both the NQA 
and dispersion theory, like the Tamm-Dancoff and 
LSZ formalisms, are nonperturbative methods of 
solution. However, in the V -sector the second named 
approach requires the solution of an Omnes-type and 
a Low-type integral equation while the other methods 
achieve the desired results algebraically. 

The dynamics of the U -sector is carried by the 
three coefficients shown in Fig. 1, each of which 
satisfies an integral equation that can be derived from 
the set of equations for the c-number coefficients. 
For the purpose of interpreting the structure of these 
integral equations, it is instructive to also present 
them by graphical means. However, for economy of 
presentation we do not provide diagrams for all the 
equations in the set. The U-particle mass renormaliza­
tion is given graphically in Fig. 6. 

We first consider the appropriate graphs for a 
diagrammatic construction of the integral equation 
for V 21 • To do this, we seek the coupling between the 
UV8 and UN88 vertex functions 1121 and n2H each with 
one leg off the mass shell. Taking into account the 
symmetry property of identical bosons, we find the 
relevant diagrams are those displayed in Fig. 7, which 
lead to the separated integral for V21 shown in Fig. 8. 
In analytic form, this equation reads 

hC:< - w)v (w) = AZJ(W) + g2f(w)ff(W')V21(W')d~kl 
n x-w-w'+u 

u 

u 

u 

8\ v 

u 

(28) 

FIG. 6. U-particle mass re­
normalization given by 
Eq. (12). 
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, 
I 

8 

u 

v 

u 

= -.fun.. 
E-m 

I 
"2 

/ 
/ 

u 

/ / 
/ I 

v 

u 

8 8' N 

u 

u 

/~ + '",\ , 

8 v / 
I 

+ 

, 
/ I 

I I 

u 

8' 8 N 

8 v 

FIG. 7. Equations coupling vZl and n21. 

where x=mu-m, and the it may be dropped here since 
for a stable U particle we have x < J.L. A comparison 
of graphs in Figs. 5 and 8 explains the factor of 
h(x-w) appearing on the left-hand side of Eq. (28). 
We wish to rewrite Eq. (28) in terms of another 
function, cf>(w, x), defined by 

cf>(w,x)= h(X-W)V21 (W) 
XLJ(w) 

(29) 

It is easily seen that cf>(w, x) satisfies the integral equa­
tion 

cf>(w x) -1 _ ~J~Imh(W')cf>(w" x)dw' 
, - 7T" h(x-w')(w'+w-x) , 

(30) 

which is similar to the well-known Kallen-Pauli 
singular integral equation. There are standard analyti­
cal techniques for solving this type of equation and 
generalizations thereoL 24 Let us obtain next the inte­
gral equation for the VB scattering amplitude embodied 
in the coefficient V 22 with the V leg off the mass shell. 
In this case we expand V22 in terms of those graphs 
having either a U field or an N field off the mass shell 
as shown in Fig. 9. This implicates three other coef­
fiCients, and the expansion of one of these, namely 
n22 , also given in the same figure, yields the coupling 

u u 

v v I 
I 

8 

u 

I 
I 

I ( 

" 8'\ 
V I 

8 

u 

FIG. 8. Integral equation for v21 obtained from the graphs in 
Fig. 7. 
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N 

FIG. 9. Equations showing the expanSion of v22 and its coupling 
wi.th 1122_ 

of diagrammatic equations which leads to the following 
analytic form of the integral equation for V 22 illustrated 
in Fig. 10: 

h(w' -W)V22 (W, w') = - fff(w)f(w') /w + :\.ZJ(W)U21 

(31) 

As before, the presence of the factor h(w' -w) on the 
left-hand side of this equation is the result of combining 
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FIG. 10. Integral equation for V22 obtained from the graphs in 
Figs. 2 and 9. 

L.M. Scarfone and J.A. Burns 2038 



                                                                                                                                    

the first and fifth graphs on the right side with the 
graph on the left side in Fig, 10. Of course, here as 
in Fig. 8, the closed loop involving the box signifies 
the occurrence of an integral equation. The absence of 
this feature in Fig. 5 led to an algebraic equation for 
vll as we have seen, It is useful to introduce the 
function X(w, w') defined by 

x(w, Wi) = hew' -W)V22 (W, w')/g2f(w)f(w'). 

One can then readily establish that X satisfies the 
Singular integral equation 

x(w, w') 
_ 1 (') 1 f~ Imh(w")x(w", w')dw" 
- - - + Xo w - - h(' ")(" ,. , 

(J) 7T" W -w w +w-w -l€ 

(32) 

(33) 

where Xo(w') is an abbreviation for XZ 1U21 (W')/g2f(w'). 
This differs from the Klillen- Pauli equation for the 
VB amplitude, off the mass shell, in the usual Lee 
model by the presence of the additional term Xo in the 
inhomogeneous part due to the U particle. 

We now proceed to set up the third integral equation 
in the U sector. The relevant "physical" process is 
the collision of a meson with a V particle and the 
production of an N and two mesons by these particles. 
The appropriate coefficient is V 23 with the V leg off 
shell. As in the previous cases, we look for an ex­
pansion of V23 in terms of other possible coefficients 
permitted by the selection rules in the theory. The 
graphs in question are shown in Fig. 11 where the ex­
pansion of n23 provides the diagrammatic coupling of 
equations needed for the separated integral equation 
for 1'23 given in Fig. 12. The mathematical expression 
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of this figure takes the form 

hew' +w"-W)V23(W.W',w") 

_g3f(w)f(w')f(w") ( 1 + 1 \ 
- 2 h(w")(w"-w+it) h(w')(w'-w+it)) 

+ xZr/(W)U22 (W', w") 

! f(w"')V2i W"', w', w")d3k'lI 

+g2f(w) w" +w'-w-w"' +ie (34) 

Again, except for the U 22 term due to the U particle, 
this is the equation for the production amplitude, off 
the mass shell, found in the unmodified Lee model. 
Here, also, we introduce another function <p (w, w', w") 
defined by 

,I, ( I ") _ -2h(w' + w" -w)h(w')h(W")V23(W, w', w") 
'I' w, w ,w - lff(w)f(w')f(w") 

(35) 

and obeying the integral equation 

<p(w, w', w") 
hew') + h(w") 

w-w" -it w-w'-it 

_!.fOO [Imh(w'")]<p(w"',w',w" )dw'" (36) 
7T "h (w' + W" -w"')(w"' + w-w' -w" -ie) , 

where we let <Po(w', w") symbolize -2XZ1h(w')h(W")U22 

(w', w")/lff(w')f(w"). In solving integral equations 
such as (33) and (36) the unknown terms Xo and <Po are 
treated as constants which are determined after the 
formal solutions are found. These points will be taken 
up in the next section which deals with the NQA solu­
tion of the full U sector. 

A review of the preceeding equations shows that the 
V and U sectors of the Bronzan-Lee model are solved, 
respectively, by one algebraic and three singular 
integral equations in the NQA. One less integral equa-
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tion is required in a similar treatment of the VB sector 
of the Lee model. As in the Tamm-Dancoff eigenvalue 
method one works with off-the-mass-shell amplitudes 
such as those defined by Eqs. (21), (32), and (35). In 
the U sector this entails two separate problems. One 
of these involves the VB scattering amplitude with the 
V leg off shell and the production process ve - NBe 
with a different off-shell extrapolation, while the other 
deals with the amplitude for Nee scattering with the 
N leg off shell through its connections with the amplitude 
for NB scattering and the production amplitude with the 
V leg off shell. In the LSZ approach the solution to two 
singular integral equations solves the entire U sector. 
One such equation performs a similar function in the 
ve sector of the ordinary Lee modeL There is a great 
deal of similarity between the LSZ analysis of the 
U sector and the VV sector of the Lee model. The 
latter problem is also solved by two singular integral 
equations, yielding two scattering amplitudes, a 
production amplitude, and an equation for the deter­
mination of the two-heavy-particle bound state energy 
which follows from the analytic properties of the T 

function appropriate to the VV propagator. An analogous 
consideration of the U particle propagator leads to its 
mass renormalization constant. 

It is known that the LSZ method of solution in models 
of the present type has both a formal and calculational 
appeal not enjoyed by the N-quantum, dispersion, and 
eigenvalue treatments, The reason for this is traced 
to the additional degree of freedom due to the time 
variable in the T functions. 16 These functions are 
coupled through the Matthew-Salam equations which 
contain the dynamiCS of the model in questiono In 
momentum space the T functions in these equations 
carry a Fourier transform variable corresponding 
to the time, and the extra information in this variable 
reduces to a minimum the number of integral equations 
needed for a complete solution. From a mathematical 
point of view the NQA solution of the U sector is of the 
same order of complexity as the Tamm-Dancoff 
eigenvalue method, The former has the advantage of 
yielding the complete Heisenberg fields, while the latter 
uses expansions in terms of stateso Of course, on the 
relativistic level the NQA is to be desired since it works 
directly with connected graphs and is manifestly co­
variant. 1 The inclUSion of the U particle in Amado's 
dispersion calculation of ve elastic scattering yields 
a very complicated set of dispersion relations. 

V. N-QUANTUM SOLUTION OF THE TWO-MESON 
USECTOR 

This section is concerned with the evaluation of 
coefficients associated with the U sector. For this 
purpose, we require the solutions to the three singular 
integral equations developed in the previous section. 
After obtaining expressions for V 2H V 22 , V 23 , we make 
use of the c-number equations to determine the re­
maining U-sector coefficients. From these results 
we are led to the renormalization constants and the 
S-matrix elements. 

It is not necessary to dwell on the available techni­
ques for solving Eqs. (30), (33), and (36). As indicated 
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earlier, standard mathematical routines exist for 
dealing with these equations. In spirit we adopt the 
procedures used in previous papers. 17,25 The mathe­
matical structure of Eqs. (30), (33), and (36) should 
be compared with the integral equations that occur 
in the 2V sector of the Lee model. 25 In this comparison 
it will be observed that the principal difference between 
the two classes of equations is the use of the inverse 
V -particle propagator function h(w) in the former 
case vis-a-vis the corresponding VN propagator 
function in the latter case. Both functions have a 
zero point, the same cut from j.J. to positive infinity, 
and the same behavior at infinity. Thus, the same 
techniques of analysiS apply in both instanceso From 
the solution to Eq. (30), we have via Eq. (29) that 

V 21 (w) 

_ AZJ(W) (1 [ ) 
- Zy[1 +h(x)Ix(x)] X-w +{3(x) Ix(x-w)-Ix(x)] • 

(37) 

The integral I w(Z) was first introduced in the solution 
of the ve sector of the original Lee modeL 26 Its general 
definition in the complex Z plane is given by 

I w(Z) =~ j: 1m (htw») (w-Z~~(W-w) , 

where W is a real variable. Both h(x) and Ix(x) are 
real integrals since the stability of the U particle 
requires that x < j.J., 

(38) 

The mass renormalization is calculated by sub­
stituting Eq. (37) into Eq. (12) and carrying out some 
contour integrationso In this process one establishes 
the expression 

! j~ [Im/3(w)]Ix (x-w)dw 
11 J> 

(39) 

Since the steps leading to Eq. (39) are not so obvious, 
the interested reader may wish to consult the Appendix 
of Ref. 17, where a similar integral is evaluated in 
detail. As expected from previous works the result 
for Zuomu is 

Zuomu = (A2Z~/2g2) [x + 20m - h(x)/Z ~ d+(x)], (40) 

where d*(x) ,,;} ± h(x)Ix(x). In the NQA, the mass re­
normalizations Z yom and Z uomu are obtained from 
equations for c-number coefficients. Another approach 
makes use of the property that the V and U propagators 
have poles at the observed masses m and m u, re­
spectively. In the same context, the wavefunction re­
normalization constants Z y and Zu are derived from 
the fact that the corresponding residues of these 
propagators at these poles equal unity. To determine 
Z u' we adopt here a definition of the coupling constant 
A which makes the exact scattering of mesons by a 
V particle equal to the lowest order perturbation theory 
result at the unphysical energy w = x. The exact 
amplitude for this process will follow from the solu­
tion to Eq. (33). In the meanwhile, the vertex function 
renormalization constant Z1 is determined as usual 
by prescribing that the uve vertex function be normaliz­
ed to unity on the mass shell. In this way, we have 
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(41 ) 

Having secured V 21 and all the V -sector coefficients, 
we are now in position to derive expressions for the 
coefficients n21> 0'23' and 0'21' The first of these is 
immediately read off from Eqs. (16c) and (37). The 
second is obtained from Eqs. (17e), (19), (21) and the 
solution of Eq. (30) embodied in Eqs. (29) and (37). 
We write 0'23 in the convenient form 

( ')_ gf(w)f(w") (V21 (w') + v21 (x-w')\ (42) 
01 23 w, w - x-w-w' trw') !(x-w'»)' 

In a like manner, we use Eqs. (16a) and (17c) to see 
that the third coefficient 01 21 is expressed by 

01 21 (W) = V(w)/(x-w). (43) 

We now turn our attention to Eq. (33) and results 
derivable from its solution. Again, it is worth pointing 
out the similarity in the mathematical structure between 
this equation and the Singular integral equation that 
describes VN8 scattering in the Lee mOdel. 25 From 
the solution to Eq. (33), and in view of Eq. (32), the 
coefficient V22 for the description of VB scattering be­
comes 

=fff(w)f(w') (a(w') + 2(w' -w)Iw'(w' -w») 
w(w-w' -it) (3(w')d+(w') d+(w') 

I\ZJ(W)U21 (W') 

(w-w' -it) Zv 

x (1 +h(W')[W'-W)Iw'(W'-w)-WI[w,(w'»)) (44) 
w~(w') . 

At this point we find the U -sector coefficient U21 from 
Eq. (14a) by making use of the above expression for 
V 22 and recalling the important relation established in 
Eq. (39). After a conSiderable amount of algebra, we 
obtain the desired result 

U21 (W) = 21\Z yZJ(w)/ D(w, x), 

where 

D(w,x) =Z~[2Zu-(I\Z/g)2J(w-x)~(w) + (\Zl/g)2 

(45) 

x [hew )-h(x)d+(w)/ ~(x) J. (46) 

Thus vn is completely determined when Eqs. (44) and 
(45) are combined. With the solutions for V22 and U21 
at hand, we can now find n22 and 01 22 , The former fol­
lows straightaway from Eq. (16d) while the latter is 
determined through Eq. (17d) and the already known 
coefficients appearing therein. We easily find that 

0' (w w') =Jff(w )f(w') 
22' w'-w+ie 

x( 2(\Z/g)2 a(w'») 
D(w')d+(w') - h(w')d+(w') • 

( 47) 

Concluding this part on the solution to Eq. (33) and 
its use in computing coeffiCients, we evaluate the 
S-matrix elements for the elastic scattering of a meson 
V particle, and the production of two mesons and an 
N particle. At the same time, we complete the deter­
mination of the renormalization constants in the theory 
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by obtaining Zu' Equations (8), (23), (44), and (45) 
lead to 

SV8~ Y8' == 6(k-k') + 27ri 6(w-w')Jfj2(w) 

[ 
a (w) 2(\Z/g)2 ] 

x hew )d+(w) - D(w, x)~(w) , 

Here the second term in the square brackets is ob­
viously due to the 1\ coupling and, on the mass shell, 
w =x, contains the direct U-particle pole, signified 

(48) 

by D(x, x) = O. The first term alone describes V8 scat­
tering in the Lee model, and has been derived and 
discussed in the literature by a variety of methods, 
including the one presently under examination. The 
possibility for a strong coupling V8 bound state in the 
Lee model, Signaled by the vanishing of d+(w) for 
w < jJ., has been well documented. 27 Of course, it is 
seen from Eq. (48) that this situation can also arise 
in the Bronzan-Lee model. We wish further to point 
out that, had the meson in the out-state of S YB been con­
tracted instead of the V particle, then Eq. (8) would 
contain 0'22 in place of V22 ' as evidenced by Eq. (47). 

To establish Z u, we proceed in analogy with the 
N8 scattering case and define \ by comparing the 
exact (renormalized) expression for the V8 scattering 
amplitude with the result of lowest order perturbation 
theory at the unphysical meson energy w =x, where 
in the latter case the unrenormalized UV8 coupling 
constant Ao is replaced by \. This is equivalent to 
setting the residue of the second term in the square 
bracket in Eq. (48) at w =x equal to \2. This translates 
into the statement 

D'(w, x)1 =2Z~d+(x), 
w-x 

which leads via the definition of D(w, x) to the form 

Z u = 1 + t(\Z/g)2 - t(\Z/gZ y)2 

(49) 

x [~(x) J-2[h' (x)-h2 (x)I;(x)], (50) 

as expected. To calculate the production amplitude, 
we combine Eqs. (9), (16d), and (44). The resulting 
expression is simplified by employing an identity26 

satisfied by [w(Z) and yields 

p Y8~ N8 '8" = 27rig3f(w )f(w' )j(w") 

( 
1 (I\Z/g)2h(w) \ 

xl2 d'(w)h(w')h(w") - D(w, x)d+(w)h(w')h(w"))' 
(51) 

The final integral equation to consider is that satisfied 
by lJr(w, w', w"), where w' and w" enter only as param­
eters. Note the similarity between Eq. (36) and the 
Tamm-Dancoff equation in Ref. 25 which describes 
the scattering of two meson by two coincident N-par­
ticles. These equations differ from the corresponding 
equation for Nee scattering in the Lee model only in 
their homogeneous terms. Equation (14b) and the 
formal solution to Eq. (30) provide two simultaneous 
relations for the evaluation of v2S and 1422 , These 
coefficients in turn determine the remaining 0' co­
efficients in the U sector, and the S matrix element 
for Nee scattering. 

The solution to Eq. (36), together with Eq. (35), 
gives 
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_ (XZ/Z y)f(W)U22 (W', w") (1 + h(w' + w") 
- w' + w" - W + iE wd+(w' + w") 

x (w' + w" - w)Iw'+w" (w' + wI! - w) -(w' + w" )Iw'+ w " 

x(w' +Wll)]) 

/ff(w)f(w')f(w") (W' w" 
- 2h(w')h(w")(w + w" - w + iE) w-w"-if. + w-w' -if 

2h(w' + W") 
+ wd+(w' + w") 

x (w' + w" - w) )Iw' +w" (w' + w" - w)-(w' + w")Iw'+ w" 

X(w' +Wll)]). (52) 

At this stage we have essentially the same mathematical 
situation for V 23 and U 22 as previously for V 22 and U 21 , 

The coupled equations for the former pair of coefficients 
are now given by Eqs, (14b) and (52). Again, after a 
tedious but straightforward computation, we arrive at 

U 22(W' w') =gXZ yZJ(w)f(w')h(w + w' )/h(w )h(w') 

x D(w + w', x). (53) 

The substitution of this result into Eq, (52) provides the 
final answer for 1'22' Then, of course, n23 follows at 
once from Eqs. (16e), (52) and (53). It remains only 
to determine Cl'26 and 1)124 in terms of the fundamental 
functions in the theory. In the former case, we learn 
from Eq, (17h) and the known expressions for the 
coefficients on the right-hand side that 

= [g'i (w)f (w'l.t (w ")f(w"')h(w" + w "'») 

X(h(w')h(tl1")h(w''')h(w"' +w" - w') 

Xd+(w" + w"')(w'" + w" - w' - W +id]-l 

x(XZ/g)2h(w
ll

+w
ll
')_ ) 

D(w"+w"l,x) 1. 
(54) 

Finally, Cl'24 follows from Eq, (17£). Here also all the 
coefficients on the right-hand side are at hand, and we 
easily find that 
1)124(W, w', W") 

= h(w' + '.JJ" - W)V23 (W, w', w")/(w - w' - (1/' + iE). (55) 

This completes the derivation of all the NQA coef­
ficients in the V and U sectors of the Bronzan-Lee 
model. To conclude this phase which deals with the 
solution to Eq. (36) and its ramifications, we cal­
culate the S-matrix element for the scattering of two 
mesons by an N particle. For this purpose we require 
the use of Eqs. (10), (16e), (21), (23), (52), and (53) to 
obtain 

S N89' .. N9 "8" , 

= t[(;(k-k" )6(k' -k"') + 6(k-k"' )6(k' -k") 1 

-7Tig26(w + W' - w" - w"')f(w)f(w')f(w")f(w"') 
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X{[6(k-k")+ o(k-k"')1 2 (6(k'-k")+6(k'-k"'») 2 ,} 

h(w') f (w)+ h(w) f (w ) 

+ 21Ti [g46(w+w'-w" -w''')! (w)f(w')f(w")f (w"') 

X h(w+w') 1 (h(w )h(w' )h(w" )h(W'" )d+(w+w') ]-1 

X (1 _ (XZ/ g)2h(w' + w" ») 
D(w' + w" , x) . (56) 

The interpretation of the structure of SNBB' parallels 
that given in the case of the scattering of two mesons 
by two N particles. The Dirac delta functions in the 
first part of Eq. (56) denote the possibility of no 
scattering, and the following part in curly brackets 
describes the elastic scattering of one meson by the 
N source while the other meson is unscattered. The 
first term in the square brackets of the connected 
part arises in the ordinary Lee model (X=O). The 
second term is obviously due to the influence of the 
U particle. It is clear from the form of Cl'26 in Eq, (54) 
that this coefficient describes the connected part of the 
Nee elastic scattering amplitude. 

VI. CONCLUSION 

Over the years a number of soluble quantum field­
theoretic mOdels have been proposed as guides to 
understanding mass and charge renormalization, the 
dynamics of strong interactions, and a variety of 
techniques of calculation which include the Tamm­
Dancoff eigenvalue approach, dispersion relations, 
the LSZ formalism, functional methods, and the NQA. 
The Bronzan-Lee model provides a very valuable 
context for all of these conSiderations, and in this 
paper we have used it to extend the application of the 
NQA and to gain inSight into the methodology of this 
calculational tool. 

We have seen that the single-source one- and two­
meson sectors of this model are solved in the NQA by 
one algebraic and three linear integral equations, re­
spectively, the mathematical complexity of which re­
minds one of the Tamm-Dancoff approach in the 2V 
sector of the Lee model. Although these two methods 
of solution are qualitatively different, there is the 
parallel aspect, at least in the present framework, 
of expanding a Heisenberg field operator in terms 
of in-fields, and a Schrodinger eigenstate of the total 
Hamiltonian in terms of bare states, where in each 
case contributions to the series have the same quantum 
numbers as the sector under investigation. Thus, in 
view of the strong selection rules in the model, there 
is an automatic truncation of the Heisenberg field ex­
pansions consistent with a particular sector and the 
conventional renormalization program. When these 
expansions are substituted in the field equations, nor­
mal-ordered products of in-field operators associated 
with sectors higher than those under consideration 
are neglected, In general, we substitute this approach 
in place of power counting,9 introduced to achieve a 
properly renormalized theory, since power counting 
is evidently inappropriate in higher sectors of the Lee 
model. 28 This will be shown in a subsequent paper 
which deals with the 2V case, and amplifies the close 
relationship between the NQA and dispersion relations. 
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There are extensions of the present work which may 
also be worth studying. For example, one can think 
of solving the Bronzan-Lee model in the presence of 
unstable U particle, X> /l, via the NQA. This would 
require that UID be removed from the asymptotic opera­
tor ring of in-field. On the other hand the existence 
of a VB dynamical bound state would necessitate in­
troducing a new and independent in-field to complete 
the set of asymptotic operatorso In view of the ap­
proximate relationship between the Bronzan-Lee 
model and the more realistic charged scalar theory29 
there is also the possibility of using the NQA to investi­
gate the two-meson solution of the latter case which 
is distinguished by its two- and three-particle unitarity 
and a crossing symmetric scattering amplitude. 
Furthermore, one could approach the interesting 
question of dynamical bound states in meson-nucleon 
scattering by using the NQA in charged scalar theory 
with a suffiCiently large coupling constant. 

Work on the NQA analysis of the bound state formed 
by the interaction between two V particles in the Lee 
model has been carried out. 28 This suggests the 
possibility of extending the treatment to the two-source 
problem in charged scalar theory, and then going on 
to explore the NQA description of the interaction 
between two nucleons in the classic Chew-Low model. 
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Some remarks on the Wronskian technique and the inverse 
scattering transforma) 
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A connection between the Wronskian technique of Calogero and Degasperis and the Lax theorem is made 
by finding the time evolution of the eigenfunctions of the linear operator for the inverse scattering 
transform of the isospectral flow equations. The significance of the temporal half of the Backlund 
transformations is discussed via specific examples. An explicit proof of the permutability theorem of the 
Backlund transformation for the case r = - q is given. New Wronskian identities with respect to bound­
state constants, which hold for all potentials allowable in the inverse scattering transform, are found. 

I. INTRODUCTION 

In a series of remarkable papers by Calogero and 
Degasperis, 1_6 a generalized Wronskian technique was 
developed and applied to the Schrodinger and the gen­
eralized Zakharov-Shabat operator to generate classes 
of nonlinear evolutionary equations solvable by the in­
verse- scattering transform, and their Backlund trans­
formations. The technique gives much insight to the 
connection between the linear dispersion relations and 
the nonlinear equations 7; furthermore, it generalizes 
the known Backlund transformations and gives a spectral 
significance to them. 

The purpose of the present work is to extend the theory 
in two respects: 

(1) We make a connection between the Wronskian 
technique and the well-known Lax theoremS (in the 
formalism of Ablowitz et al. 9

) by finding the time evolu­
tion of the eigenfunctions of the inverse scattering 
transforms for general nonlinear equations generated 
by the technique. 

(2) Since only the spatial half of the Backlund trans­
formations were obtained in Refs. 1-4, we demon­
strate how the other half may be obtained in specific 
examples, and point out their spectral Significance with 
respect to the transmission coefficients. 

For the purpose of explicitly proving the permutability 
theorem of the Backlund transformation, we have also 
shown how a quadratic Backlund transformation is com­
pos ed of two" linear" ones. 

Finally, in the Appendix, we derive new Wronskian 
identities for the discrete eigenstates of the Zakharov­
Shabat operator, by which one can obtain the time de­
pendence of the bound-state constants for a larger class 
of potentials than was assumed in Refs. 1-6. 

The present work relies heavily on the results of 
Refs. 1-4, to which we refer the readers for much 
of the details. 

II. SUMMARY OF RESULTS OF CALOGERO 
AND DEGASPERIS 

In this section, we summarize some of the results of 

a)This work was supported in part by the Air Force Office of 
Scientific Research, Grant 76-3085. 
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Refs. 1-4. We shall present the results corresponding 
to the Schrodinger operator in a slightly different form 
from those of Refs. 1-3 by translating their results into 
2x 2 matrix forms. This has the advantage of revealing 
the similarities and differences between the Schrooinger 
and the Zakharov-Shabat operator; furthermore, one 
obtains information about the transmission coefficients 
in addition to the reflection coefficients. 

The linear eigenvalue problem of concern here is 

where 

(A) J{"k,tl= , 
<P2 

(J3 = (1 0), 
o - 1 

V(x, t) =(0 q\ 
r 0) 

(2.1) 

(2.2) 

(2.3) 

As indicated, both <p and V depend on x and to The 
Zakharov-Shabat problem and the SchrOdinger problem 
diff er in the boundary conditions of V at x - ± 00: 

(i) For the Zakharov-Shabat problem, 

lim q = limr= 0; 
x ... ±co x-±<Xl 

(ii) for the Schrodinger problem, 

1'=1, limq=O. 

(2,4) 

(2.5) 

For every real I::, there exists two independent solutions 
of (2.1), denoted by the columns of the matrix 

(2.6) 

Given two sets of potentials V and V' and their corre­
sponding solutions q, and q,' of Eq, (2,1), the following 
fundamental indentity is satisfied by virtue of Eq. (2.1) 
for an arbitrary matrix function F: 

(2,7) 

Copyright © 1977 American Institute of Physics 2044 



                                                                                                                                    

where T denotes matrix transpose. The Wronskian 
identities are derived from iteration schemes for F in 
Eq. (2.7). 

A. Zakharov-Shabat problem 

The eigenfunction for real k are defined by their 
asymptotic boundary conditions 

here, QI (±) and i3 (±) pertains to coefficients, in Eqs. (2. 8) 
and (2.9), for solutions of Eq. (2.1) with potential V, 
and QI"')I, i3 <*)1 are analogous coefficients for solutions 
with potential V'. 

For arbitrary functions a, b, define 

(2.12) 

and 

(
a),=1- t ~ (rtlq'+rlq 

A 2i as ax + 
b q'Iq + qlq' 

- r~r',- r' Ir)~(([), 
- q Ir - qlr ~ b 

(2.13) 
where 

Ij(x, k) '= f "'dif(~, k). (2.14) 
" 

For the arbitrary matrix F(x) in Eq. (2.7), we define 
its diagonal and off-diagonal elements as 

F(X)=( ° Fl+F2\+~a3H (2.15) 

F1 - F2 0) 
where 

(2.16) 

In Ref. 4, an iteration scheme was developed from Eq. 
(2.7), by which an infinite number of identities can be 
obtained from an initially known one. We shall use the 
superscript (II) on the quantities F, H, etc., to denote 
those obtained at the nth iteration. The subscripts ± 
will denote quantities obtained from two initial F's as 
defined immediately below. Starting with 

F!",~C ±:} (2.17) 

one obtains H1°) = 0, 

q:q} (2.18) 
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exp(- ikx) 
<I>(x, k, t)~ 

,,-+ .. QI(+)(k) exp(ikx) 

<I>{x, k, t) 

,:::. ('>(k) :XP(- ,'x) 

and 

QI<·)(k) exp(- ikX»). 
exp(ikx) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.19) 

At the nth interation, the terms inside the braces of 
Eq. (2.7) can be expressed in terms of H's as follows: 

for n?; 0, with10 

(2.20) 

(2.21) 

(2.22) 

Given F!O) in Eqs. (2.17), Eq. (2.20) determines H!1), 
and Eqs. (2.19), (2.21), (2.22), (2.15) determines FW~ 
FJ!) and thus FP); and the iteration can be repeated. 
Integrating Eq. (2.7) for each n and using Eqs. (2.8)­
(2.11) give 

J"'dx(<I>I7'H1n+1 )<I» ... 
= (ik)n A:(k) _ [nt (iW-i.J.(F~~+l )(_ 00) 

1=0 

+ FH+1 
)(- 00)u3>] B(k), (2.23) 

where A. and B are defined in Eqs. (2.10) and (2.11). 
Nonlinear evolutionary equations are obtained in the 
limit 

r'-r+rtdt, q'-q+qtdt . (2.24) 

Then, the operator A becomes 

A-L = :i C
3 

:x + 2(rlq - rlr)~; 
L qlq-qlr 'J 

(2.25) 

H~n) becomes 

(2.26) 
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u<:' - h~"' df~" tiLl"" ( ::.)Jd/. (2.27) 

In this limit, a linear combination of Eq. (2.23), for 
different n, implies that if, for constants C}o >, 

n N 
~C,(-)h~!)+ .:GC~+)h;m)=o, (2.28) 
1=1 m=1 

then the evolution of 01 (> )(k) and /3 (0 )(k) are given byll 

13;* )(k) = 0, (2.29) 

n N 
,0 c;-)(ik),-l O!i'')(kl± ~C~+)(ik )m-1 01'0 )(k) = o. (2.30) 
1=1 m=l 

Equations (2.28) are the nonlinear evolution equations. 

Similarly, for two different sets of potentials, 
(q',r') and (q,r), if, for constants p;O), 

n' N' 
~P,<-)H~')+ ,0p~+)H;m)=o, 
1=1 m=l 

(2.31) 

the reflection and transmission coefficients, 
(O!(;)(k), /3 (')(k» and (01 (t)l(k), /3 (>)I(k» are related by 

(2.32) 

B. Schrodinger problem 

and 

O!(»'(k) =/3 (*)(k){[f(ik) :r g(ik)]/(j(ik) ±g(ik)]}e~) / e(·) , 

(2.33) 

where 

~ 

f(ik) == ~P,(-)(ik)I-1, (2.34) 
1=1 

N' 
g(ik) = B P ~+)(ik)1Pl-1, (2.35) 

m=l 

(2.36) 

N' [m- l 

Go(ik) = ~ Pm (+) ~(ik)m-j-l(Fl+ (;+1)(_ 00) 
m=1 j=O 

± F2+ U+l )(- 00» J. (2.38) 

Equation (2.31) gives the generalized Backlund trans­
formations. The usual Backlund transformation is the 
special case when f(ik)± g(ik) are linear functions of k. 

In this case, r = 1. The eigenfunction of Eq. (2.1) for real k are characterized by the boundary conditions 

_ (- Zik exp(- ikx) - 2ikR(k) exp(- ikX») 
<I> (x, k) -

x~+'" exp(- ikx) + R(k) exp(ikx) exp(ikx) + R(k) exp(- ikx) 

_ (- 2ikT(k) exp(- ikx) 0 ) 

x~_oo T(k) exp(- kx) T(k) exp(ikx) • 

The coefficients satisfy the relations T(k) = T(- k), R(k) =R(- k). 

For two potentials, g, q', we let 

D(x) =g - q', S(x) =q + q'. 

For an arbitrary function ¢(x), one defines the matrix 

F(X)=( 
~! -2ik¢ + I'" dyD(y) ¢(y) 

~! -2ik¢ - foo dYD(Y)¢(Y») 

02¢ . o¢ 
- a?' + 2tk ax + S(x)¢ 

- 2¢(x) 

It is shown in Ref. 2 that the identity (2.7) generates the 
iterations 

B(n+l) _ 4kZB(n) 
• 0 

(2.42) 

(2.43) 

and 

- o¢ In) 
H(n) - 1.(1 (J) -*- (with H;O) = 0), * - 2 - 3 oX 

o,!,(n+l) 03,!,(n) o,!,(n) 
_'1-'0 __ = _ '1-'* + 2S(x) _'1-'_*_ 

ox --axr ax 

(2.39) 

(2.40) 

(2.41) 

(2.45) 

( 

-2 _ 2ik- ("dYD(Y») 
+ ~~¢!n)+D(x) I'" D(y)¢;n)(y)dy. (2.46) 

F!O) = 

_ 2ik + Ix 00 dj"D(y) S(x) (2.44) 

2046 J. Math. Phys .. Vol. 18, No. 10, October 1977 

Equations (2.43) and (2.44) d:termine H~1) in Eqs. 
(2.42). Equations (2.45), (2.46), and (2.41) determine 
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if) and cpP). The iteration can now be repeated. Similar 
to Eq. (2.23) in the Zakharov-Shabat problem, one 
has the Wronskian identities 

where 

( 

R+R' 
R~O) = _ 4k2 

l+R'R- T'T 

l+~R'= TT') 

R'+R 

+ 2ik foo D(V)dY(_O 
_00 T'T 

RCO) = 2ik 
( 

R-R' 

- -l+R'R+T'T 

~ ( 0 - 2ik f D(v) cp;il (y) dy _ 
_.. -T'T 

In the limit 

q'-q+qt dt , 

with 

h(1 ) = oq (1 _ (J ). 

• ax 3 , 

with 

h~1)=H(J3-1)qt, 

and 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

In this limit, for constants ej'), the nonlinear evolu­
tion equation 

and Eq. (2.47) implies thatll 

Tt=Tt=O, 

Rt =w(k)R, 

and 
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(2.58) 

(2.59) 

(2.60) 

(2.61) 

where 

w(k) =i te~·)(4k2)m ;/[k teiO)(4k2)1-1]. (2.62) 
mol / I 1=1 

Backlu!',d transformations are obtained from linear 
combinations of H;i): 

which, according to Eq. (2.47), implies that 

R' - 2ikf(k) - g(k) R 
- 2ikj"(k) + g(k) , 

R' - 2ikl(k) + g(k) R 
- 2ikJ(k) - !f(k) , 

where 

N' 
g(k) = 0fJ::)(4k2)m. 

m=1 

In addition, 

, [2ikj(k) - g(k)] oC-) 
T = 2ikj(k) + g(k) ~ T, 

T'- [2ikJ(k) + g(k)](jC+) T 
- 2ikl(k) - g(k) er-> ' 

where 

n' 1-1 
~c+)(k) = i]pf-) i](4k2)I-j-1J~j)(k) 

1.1 J=1 

and 

eC-)(k) = 8c+)(_ k), 

with 

J~ )(k) = 4k2cp;il(_ 00) - 2ik J ~ D(y )CP£i )(v) dy. 
-~ 

III. TIME EVOLUTION OF EIGENFUNCTIONS 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

(2.71) 

(2.72) 

We can now find the time evolution of the solution of 
Eq. (2.1) corresponding to the Zakharov-Shabat and 
the Schrodinger problem, given the time evolution of the 
potentials, i. e., Eqs. (2.28) and (2. 58). 

A. Zakharov-Shabat problem 

We first note that as 

V'- V+ Vt dt, 

F;n) becomes 

F~n) - f.Cn
) + O(dt), n = 1,2, ... , 

with 

f.,">~F!">~C :). 

K.M. Case and S.C. Chiu 
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and 

F~n) _I_Cn) dt, 11 = 1,2, ... , 

But 

f_"" ~ F~O> ~C -0') 
Furthermore, Eq. (2.20) becomes 

1I!",1) _ i1<l1~n) 

ar Cn ) 
= ---' - + (VT _ ia 1<),Cn) +jCn)(V _ ia k) ax 3 J" 3 , 

except for h~1), which satisfies 

1z~1) = _ F~O)Vt . 

(3.4) 

(3.5) 

(3,6) 

(3.7) 

We also note that Eqs. (2,21), (2.22) imply that I,Cn>, 
11 2': 1, are symmetric. 

In the following, we shall prove that if the solution </! 
of Eq. (2. 1) evolves according to 

N m_1 ] 
+ EC~) j~ (ik)m-j-1/+(J) </!, (3.8) 

then the isospectral flow of the potentials in Eq. (2.1) is 

n N 
'0cz'-)h~/)+ 6 C~·)h~m)=o. (3.9) 
1=1 m=1 

The proof follows the standard procedure. First we 
differentiate Eq. (3.8) with respect to x and use Eq. 
(2.1) to obtain 

x [a~.:j) +I.(j )(V - ia3"] } 1. 

By Eq. (3.6), Eq. (3.10) can be written as 

[t Cz'-)(il?)/_l] a2,p 
1=1 afax 

m_1 
N 

+ 6 C~+) ~ (il?)m- j -l 
m=1 j=O 

X [lzi j+1 ) - illizi}) + (ia3k - VT)/+(})] }</!. 

(3.10) 

(3.11) 

Next, we differentiate Eq. (2.1) with respect to t, 
multiplying the result by L:~.t CI-)(ik)/-1 and use Eq. (3.8) 
to obtain 
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[ t Ci-)(ik)/_l] .ft 
1=1 axat 

= - F :0) { t q-)(ik)/-l F~O)(Vt - ia
3
k t ) 

1=1 

(3.12) 

Equating the right-hand sides of Eqs. (3.11) and (3.12), 
using Eq. (3.7), and rearranging, we obtain 

n 1-1 
'0q-) 6(ik)/-J-1[h2j•1) - ikh~j)] 

I .t j =0 

N m-1 
+ ~C~) L;(ik)m-j..1[h}i+1) - ikhi})] 

m.t j=O 

n 
=ia1kt L;q-)(ik)/-1. (3.13) 

1=1 

The isospectral flow equation is Eq. (3.13) with k t = 0, 
which is Eq. (3.9). 

As an example, let Ci-) = 0 for i'> 2, C}+) = 0 for j > 4. 
The nonlinear evolution equation is 

(3.14) 

where subscripts x and t stands for partial derivatives. 
The time evolution of </! is 

(q-)ik + C~-»)~(x, k, t) 

(
0 1)1 ( trt - CC-) 

- _ 1 0 2 ~ Ix ~ (qr)t dx' 

t l ~ ~qr)t dX') 
{Nt 

3 (0 1) + L; (ik)1 C i:{ 
1=0 1 0 

:,) 

B. Schrodinger problem 

Again, as q' - q + qt df 

rqx-qrx )! 
2 

2 </!(x, k, f). 
-qxx+ q r 

K.M. Case and S.C. Chiu 
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q
) 

qx 

(3.15) 
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(3.16) 

(

-1 
I}O) = 2 

- ik 

(3.17) 

and 

;. ~" ) _ j~" ) dt 

except for 

I.'"' ~ F~O> ~C -:). (3.19) 

Again, Eq. (2.421 holds with H;")Jeplaced by h;n>, and 
;;") replaced by l.en

), except for h::), which satisfies 

(3.20) 

We may now state that if r = 1 and the evolution in 
time of the solution ~ of Eq. (2.1) is 

tCz'-)(4k2)/_1~t 
/=1 

(3.21) 

then the isospectral flow of q of Eq. (2.1) is Eq. (2.58). 
The proof goes in exactly the same way as before. The 
only difference is that (ik) is replaced by (4k2). As an 
example, let c~+) = Cf-) = ° for i> 2; then the equation 
of motion is 

Ci-)(qxxt - 4qqt + 2qx J ~ qt dx') - C~-)qt + 2cf+)qx 
x 

+ 2Ct)(6qqx - qxxx) = 0, 

and the time evolution of ¢ is 

~ C. :) 
X C(-) x 

1 (
_2J~qtdX' 

2 _ qt _ 2ik Jx~ qt dx' 

2
q

) 

ik 

+ (2qX - 4ikq 

4q 

- 2Qxx+4ikqx+4q'\ll¢. 

- 2Qx + 4ikQ )J~ 

(3.22) 

(3.23) 

Remarks: A consequence of Eqs. (3.8) and (3.21) is 
that the time dependences of the bound-state constants 
are the same as those of the refelction coefficients, 
namely Eq. (2.30) and Eqs. (2.60)-(2.61). To derive 
this fact from the Wronskian identities without excessive 
restrictions on the potentials, one must derive the 
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Wronskian identities for the appropriate derivatives of 
the Jost solutions with respect to k (see the Appendix). 

IV. ON BACKLUND TRANSFORMATIONS 

It was clear from the derivations in Refs. 3, 4 that 
the Backlund transformations (2.31) [or (2.63)] makes 
no reference as to what evolution equations the poten­
tials (r', q') and (r, q) satisfy, and hence cannot guar­
antee that they evolve via the same equation. A remark­
able result of Refs. 3, 4 is that the reflection coeffi­
cients have the same time dependence [as manifested in 
Eq. (2.32) or (2.64) and (2.65)] once Eq. (2. ~1) [or 
Eq. (2.63)] is satisfied with constant p~±) [or p~)]. 
However, it should also be noted that if the primed and 
unprimed potentials satisfy the same nonlinear equa­
tions, the transmission coefficients must also have the 
same time dependence, i. e., they must both be con­
stants in the case of isospectral flows, as implied by 
Eq. (2.29) [or (2.59)].13 The relations between the 
transmission coefficients are actually Eq. (2.33) [or 
Eqs. (2.68) and (2.69)], which contains e(±) [or e(')], 
whose time dependences are unknown. We must, there­
fore, impose the same nonlinear equation (2.28) [or 
(2.58)], on both sets of potentials, and thus guarantee 
that e(') (or 8('» are "mutual constants of motion. "14 A 
look at the first few eC') 's shows that they are differ­
ences or products of constants of motion for the individ­
ual pair of potentials. For example, for the Zakharov­
Shabat problem. 

Ff~) = Fi:) = 0, (4.1) 

Ff';)(- 00) = - Fi:)(- 00) = [Ff:)(- 00) F, 

FiZ.)(- 00) =- Ff:)(- 00) =i J ~ d~ 
-~ 

(4.3) 

(4.4) 

These are easily recognized as constants of motion if 
the isospectral flow equations are imposed. 

The nature of the temporal half of the Backlund 
transformation is clear; it must be such that together 
with the spatial half they imply that both sets of poten­
tials simultaneously satisfy the same nonlinear 
equation, 15 thus forcing eC

±) [or eC')] to be constants. 
The simplest choice, but not the only choice, is to 
differentiate Eq. (2.31) [or (2.63) 1 once with respect 
to time t, apply the appropriate isospectral flow equa­
tion for both sets of potentials, and integrate once with 
respect to x. We shall illustrate this procedure by 
simple examples, namely, the sine-Gordon and the 
Korteweg-de Vries equations and restrict ourselves to 
only linear and quadratic Backlund transformations. 
These should demonstrate the general idea. 

First, consider the Korteweg-de Vries equation. For 
the linear Backlund transformation, p~±) = ° for i ' 1, 
Fr) = 1, and we have 

qx + q; + (q - q') r ~d1'(q - q') + pi-)(q - q') = O. (4.5) 
• x 

Differentiating with respect to time and using the fact 
that both q and q' satisfy 
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(4.6) 

and integrate with respect to x, we obtain 

qt + q: = (3qf'2 - q:x - 3q2 + qx) [p~.) + J'" (q - q') dy]. 
x 

Equations (4.5) and (4.7) are the two halves of the 
Backlund transformation. Following Ref. 3, if we let 

, , 
q =- w" 

(4.8) 

(4.9) 

and choose the constant of integration appropriately, 
we get 

(4.10) 

and 

(4.11) 

These results are equivalent to those of Ref. 16. 

The next simplest Backlund transformation is ob­
tained by letting pl-) = 0 for i > 2, pt) = ° for i> 1, and 
p~.) = 1. We have 

(qxx - q:x) - 2(q2 - qf'2) + (qx + q;>(w - w') - t(q - q')(w - W')2 

+ pt)(q - q') + P't)[qx- q; + (q - q')(w - w')] = 0, 

(4.12) 

where 

w = r '" q dy, w' = J '" q' dy. 
. x x 

(4.13) 

Similar to Eq. (4.7), we have 

+ (qt + q{)(ji~.) + w - w') 

(4.14) 

Equation (4.14) may be considered as the temporal half 
of the quadratic Backlund transformation. 

As a second example, we consider the sine-Gordon 
equation, which is a special case of Eq. (3.14) with 
C~-)=ct)=O, and q=-r, i.e., 

(4.15) 

(4.16) 

The usual form of the sine-Gordon equation is obtained 
by letting 

(4.17) 

and then 

Uxt = sinu (4.18) 

and 

Wt =t cosu. (4.19) 
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The spatial half of the linear Backlund transformation 
iS17 

p~-)(r' - r) + (r + r')x - (r - r')(W - W') = 0, (4.20) 

or 

u; + U x = 2Pi-) sin[(u' - u)/2)]. (4.21) 

Following the prescribed procedure, we get the temporal 
half of the Backlund transformation: 

(r: - rt)(Pi-) + W - W') + (r+ r')(W t + W:) = 0, 

or, equivalently 

(u: - Ut) = (2/p~-» sin[ (u + u')/2]. 

These results are well known in the literature. 18 

(4.22) 

(4.23) 

For the quadratic Backlund transformation, we may 
takept)=l, p~-)=h(K(·)+K(-», pi+)=-iK(+)K(·), and 
all other pl-") = 0. 17 Equation (2.31) becomes 

X[(rx - r:) + (r+ r')(W' - W) - iK(+)(r+ r')]= 0, 
(4.24) 

and the temporal half of the Backlund transformation is 

(rt + r:)H[(r + r')2 + (W' _ W)2] 

+ i(K(+) + KH)(r - r')] = 0. (4.25) 

We conclude this section by showing explicitly how 
the quadratic Backlund transformation (4.24) may be 
considered as composed of two successive linear 
Backlund transformations of the form (4.20) or its 
equivalent. For this purpose, we introduce the following 
notations: 

R± =r± r', (4.26) 

$1=w'- W, (4.27) 

O'± =t(R; + $12) - h K(+)$1, (4.28) 

and 

K± = R;! O'±x' (4.29) 

Then K± = 0, or equivalently 0'. = 0, are linear Backlund 
transformations as Eq. (4.20). It is clear that Eq. 
(4.24) can be written as 

(4.30) 

For some rb let 

(4.31) 

R{± =rl± r', (4.32) 

(4.33) 
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n{=w' - Wl> (4.34) 

a.I = HRi~ + nn - ~ KC+ )nl> (4.35) 

a{~ =HR1~ + n{l') -tiKC-)n'l> (4.36) 

Kh =Rb-lal~x ' (4.37) 

and 

K{~ = R{~ -1 a{*x. (4.38) 

It can be easily shown that Eq. (4.30) can be written 
as 

(4.39) 

Therefore, if al+ = 0 is a linear B~cklund transforma­
tion from r to rl with constant iKc+) and a'l_ = 0 is one 
from rl to r' with constant iKC-), then Eq. (4.39) is 
automatically satisfied. 

Similarly, let us define 

J* =R;lf3u • 

Then Eq. (4.30) can also be written as 

f{J+x + R+i3+ - i KC+ )JJ = o. 
Again, for some r2, let 

R2* =r± r2, 

J.' R' -la' llR' R' n' . C+)R'] 2* = 2* ~2*x = 2l 2*x + 2*.02 - 1 K 2* ; 

then Eq. (4.42) can be written as 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

(J2+x - J{_) + (R2_ + R~,> (f3 2+ + f3;J - (iKC+)J2+ + i KC-)JU 

(4.47) 

so that it is also equivalent to a B~cklund transforma­
tion, 13 2+ = 0, from r to r2 with constant iK C-), succeeded 
by another, (3{_=0, from r2 to r' with constant iK(+). 
Equations (4.39) and (4.47) demonstrate the validity of 
the permutability theorem. We note that when KC-) 

= - KC
+)* and r, r' are real, both rl and r2 are complex, 

and are not solutions from the inverse-scattering theory 
of the sine-Gordon equation. 

A consequence of the permutability theorem is that 
Eq. (4.24) can be replaced by either al+ = 0 and a{. = 0 
or f3 2+ = 0 and f3;_ = O. If we express the latter four equa­
tions in the form of Eq. (4.21) and eliminate u:, ux , 

ulx, ~x' we have the well-known18 result relating u, Ul> 
u2, and u': 

(
u' + u ) K(+) + K(-) (Ul -u.\ 

tan -4- = K(+) _ K(-) tan ~J . (4.48) 

Knowing three solutions u, Ul, and u2, Eq. (4.48) en­
ables us to calculate a fourth solution, u', algebraically. 
This is a remarkable Simplification, conSidering the 
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complexity of the original quadratic B~cklund transfor­
mation (4.24). 

V.SUMMARY 

We have shown that there is a direct connection be­
tween the Wronskian technique and the Lax theorem. 
Given the evolutionary equation (3.9) or (2.58), the 
time evolution of the eigenfunction of the linear operator 
is given by Eq. (3.8) or (3.21), respectively. 

In order to see the complete spectral meaning of the 
B~cklund transformation, it is necessary to look at 
both the reflection and transmission coefficients. It is 
then seen that in order that the transmission coefficients 
of the two sets of potentials be constants Simultaneously, 
the same nonlinear evolutionary equation has to be im­
posed on both sets of potentials. The temporal half of 
the B~cklund transformation serves to identify the 
evolutionary equation and its effect is to force e(*) 

(or e(*», defined by (2.36) [or (2.70)], to be "mutual 
constants of motion." 

We have also shown that the quadratic Backlund 
transformation can be regarded as two successive lin­
ear B~cklund transformations, and given an explicit 
proof of the per mutability theorem. 

APPENDIX 

We shall derive an identity for the discrete spectrum 
of the Zakharov-Shabat problem. 

As is well known, the J ost solution defined by 

(

eXP(- ikX») 
I/!(k, x) -

x __ " 0 

(

a(k) eXP(ikX») 

x-+'" b(k) exp(ikx) 

(A1) 

can be analytically continued into the upper half plane. 
Let ~"(k, x) and </J(k, x) be solutions of Eq. (2.1) corre­
sponding to two different potentials, V' and V, respec­
tively. Suppose, at k = K j , ImKj > 0, both </J'(k, x) and 
</J(k, x) are simple bound states; then 

a(Kj)=a'(Kj)=O, (A2) 

but their derivatives with respect to k do not vanish. It 
can be easily seen that for H~n) defined in Eq. (2.19), 

(A3) 

Let ~j be the derivative of </Jj = </J(K/1 x) with respect to k 
at K,. ~ j satisfies 

a . . 
ax </J j = (V - ia3 Kj)1jJ j - ia3 ljJj· (A4) 

It follows that, for the matrices Fln >, 

(A5) 

Similarly, 
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~[,j, tI' F in ),/, 1 
oX '1'1 " 't'I 

(A6) 

Summing Eqs. (A5) and (A6), integrating over x and us­
ing the definition of H;n) and (A3), we have 

(A7) 

where 

j(n)-J" dx[",ITH(n),;, +,j,ITH(n),/, 1 
" - _" '1'1 ,,'I'I '1'1 " '1'1, (A8) 

and 

(A9) 

where CI , C; are the bound-state constants defined by 

<PI _ ( 0 \, 
x-+" C I eXP(iKjX)) 

(A10) 

and a is the derivative of a with respect to k. 

Therefore, we have 

(All) 

Equations (All), with I;n) defined by Eq. (A8) is the 
identity sought. In the limit V' - V + Vt dt, linear com­
binations of Eqs. (All) implies that if Eq. (2.28) is the 
evolutionary equation for V, the time evolution of C I is 
the same as a(+), i. e., given by (2.30) with k replaced 
by KI • A similar identity can obviously be obtained for 
the bound-state constants, Cj , in the lower half plane 
and imples that Cj have the same time dependence as 
a<-) with k replaced by Kj • One may also develop sim­
ilar identities for the Schrodinger operator. 
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We introduce a special class of j-dependent analytic operator valued functions, the completely monotonic 
operators, and find the general properties of their spectrum and of their resolvent. Next we study an 
important and wide subclass of such operators, for which it is possible to reach more detailed information 
about the leading singularity of the resolvent in the j plane, and in some cases to completely determine it. 

1. INTRODUCTION 

positive operators in ordered spaces and the pertur­
bation theory for linear operators have been widely 
treated in mathematical literature. Little attention has 
been paid, however, to the great variety of problems 
that arise in the perturbation theory for positive linear 
operators depending on a parameter. In the study of the 
multiperipheral operator equation! we had to tackle a 
problem of this kind: In order to solve the multi­
peripheral equation one has to find the resolvent of an 
operator A(j), depending analytically on the parameter 
j, and having positivity properties (4.1) (a completely 
monotonic operator). In the present paper we forget the 
particular physical features of the problem and study 
it from a purely mathematical point of view. We believe 
that the results obtained or, at least, the general lines 
we followed may be useful in solving other physical 
problems involving linear operator equations. 

The subject matter is arranged as follows. In Sec. 2 
we introduce the necessary mathematical formalism on 
Banach lattices and positive operators. In the next sec­
tion we quote or derive the results needed later about 
the resolvent of a positive operator. In Sec. 3 analytic 
families of operators are considered, attention being 
concentrated mainly on completely monotonic operator­
valued functions A (j): We justify their introduction and 
give the most general results about their resolvent 
R(A,A(j). As a main result, we identify the position of 
the rightmostj-plane singularity of R(Ao,A(j» when Ao 

is a positive real number. In the last part of the paper 
we study a particular family of such operators, interest­
ing from a physical point of view, for which we can 
give a detailed expression of the j-plane rightmost 
singularity of the resolvent. 

2. MATHEMATICAL PRELIMINARIES 

In this section we recall some definitions and prop­
erties about ordered vector spaces, in particular 
Banach lattices. 

Let 8 be a real linear vector space. A subset cr is a 
cone if it has the following two properties: 

(i) If x and y belong to cr, and a and {3 are real non­
negative numbers, then ax + {3y EO: cr. 

(ii) If x and - x are elements of cr, then x = O. 

The presence of a cone in a vector space, defines a 
(partial) order in it. It is enough to set x -'S y when y - x 
EO: <r. The relation so defined satisfies all properties re-
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quired in order for the space to be partially ordered. 2 

Later, when we mention a partially ordered vector 
space, we shall refer to the order induced by the cone 
cr. In such a space we say that a functional x* is posi­
tive if for any x EO: 0:, (x*,x)?- O. We also say that an 
operator A is positive if for any x EO: a, Ax "'- a. 3 We 
shallwritex?-O if x "'-0:, x>O if x c:cr andx*O. 
Analogous notation will be used for positive functionals 
and operators. 

In the theory of positive operators a recurrent con­
cept is the one of reproducing cones. A cone cr is re­
producing if every element x "'-/3 can be written in the 
form x = /{ - 17, where 11 and I' belong to cr. 

A partially ordered vector space is called a lattice, 
if for any two elements x and y of the space, we may 
define the supremum w =X v y and the infimum z =X Ay. 
U! is such that x -'S U' and y ~ 1/', and, if an element It 

exists such that x -'S 11 and y -'S It, then U' ~ II. In an 
analogous way we define the infimum, 

In a lattice we call positive and negative parts of an 
element x the vectors x. = x v 0 and x_ = (- x) v O. It is 
obviousthatx=x.-x_, wherex.,x_00a. Therefore, a 
is reproducing. The modulus of x is the vector Ix I 
=X. + X.' We quote here some properties4 of a lattice 
that will be useful later: 

(a) For each x, x,Ax. = 0, 

(b) for any twox,y, Ix-yl = Ix,-y.1 + Ix.-.v.I, 

(c) for any two x,y, Ix +v I ~ Ix I + I.v I, (2.1) 

(d) if x,y,z <::. cr, (x +y)Az ~ (x Az) + (yAZ), 

(X!\ y) + Z = x A z + Y A z. 

The next step is to introduce a topology in a partially 
ordered vector space or in a lattice by means of a 
norm II-II 

A very important structure is obtained when a con­
sistency condition between norm and order is satisfied. 
Explicitly, if 8 is both a lattice and a Banach space, 
and if 

Ix I -'S Iy I implies Ilx II ~ II.vII (2 2) 

for any two elements x, y E=. 8, then 13 is called a Banach 
lattice. This is in fact the most relevant structure in 
this paper, and the remainder of this section is devoted 
to explaining the main properties of a Banach lattice 8. 

From condition (2.2) one can easily deduce that if 
x, Y c: 0: and x -'S y, then Ilxll -'S Ilyll; for any x one has Ilxll 
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= II I x III. Conversely these two properties imply (2.2). 

The cone 0: is closed. For if the sequence {xJ of 
positive elements tends to x, from Eq. (2. Ib), we have 

where we set x =X. - x •. It follows that xn - x., that is, 
x.= 0 0 

We consider now the dual B* of B. The set of linear 
continuous positive functionals is a cone in B*, which 
we call 0:*. 0:* is reproducing and B* is itself a Banach 
latticeo 4 

Similarly the sum and the product of two linear posi­
tive operators is a positive operator, and the bounded 
positive operators in B form a cone in the space L (8) 
of continuous operators. It is easy to show that if 0: is 
closed in B, this cone is closed in L (8). Indeed, if 
An - A and all An are positive, then for any x t:: 0: and 
any n,A,fEO:, and therefore lim7i"'roA,f=Axt::<r. We 
shall also take into account that the transpose of a 
positive operator is positive. 

Proposition 2. 1: If A is a positive operator, then 
IIAII = sUP"x","lI1AxII. 

xco: C 

By definition 

IIA II = sup IIAx II >- sup II Ax II = M. 
IIXII~1 IIXll~1 

XEC 

In a Banach lattice, from Eq, (2,Ic), we have lAx I 
= I A (x. - x J I = I Ax. - Ax.l "'" Ax. + Ax. = A I x I. Thus 

sup IIAx II = sup II lAx III"'" sup IIA Ix III 
Ilx!f~1 IIxlI!:S1 11 Ix 111::::1 

= sup IIAx II = ,H 
lIxlI~1 
x(::C 

and the proposition follows. 

In a similar way we can show that for every x co: <r, 
Ilxll =SUP"x*,,'"l (x*,x), 

x*c: C * 

Proposition 2.2: If x E (£, we can find a functional 
x* c. (£* such that (x*, x) = Ilxll and Ilx*iI = 1. 

A well-known result of functional analysis 5 says that 
for any xc: B there exists a functional y* EO. B*, such that 
(y*,x)=llxll and Ily*II=L 

In our case it is enough to choose x* = y!, where 
y* = y! - y~, Then IIx*1I ~ lIy! + y~11 = Illy* III = Ily*11 = 1. 
On the other hand, (x * ,x) >- (y* ,x) = Ilxll >- (x* ,x), so that 
(x*, x) = Ilxll and IIx*ll = 10 

Proposition 2,3: If X,Y reB and x * 0, y * 0, Xl\y = 0, 
then a functional x* E 0:* exists such that (x*, x)? Ilxll 
and (x*, y) = 0, For the length proof see ReL 4. 

Proposition 2,4: Let x c. B be such that for any x* 
co: 0:*, (x*,x)? 0, Then x (::0:, 

Suppose that this is not true, Then x =X. - x. with 
x. * 0, Let x. = 0, Then we apply Proposition 2,2: There 
is a positive functional xj such that (xt ,x.) = Ilx'!\' Thus 
(x-~, x) = - Ilx'!l < 0, against the hypothesis. Let x. * O. 
Then we apply Proposition 2.3: As x.l\x.=O by Eq. 
(2. Ia), there exists a positive functional x{ t:: 0:*, such 
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that (x{,xJ ~ IIx.!1 and (x{,x.) =0. Therefore, (xt,x) 
= - (x2, x_) < 0, in opposition to the hypothesiS, 

Corollary 2,5: Let A be an operator defined in a 
Banach lattice such that (x-* ,Ax) ~ 0 for any x E <r and 
any x* co: 0: *. Then A is a positive operator, 

In the last part of this section we introduce some 
definitions and properties about special topics that will 
be reconsidered later, An element x E <r is quasi­
interior if (x*, x:) > 0 for any x* > O. An example: Let 
V' be, as usual, the space of equivalence classes of 
real-valued functions f(t) p-integrable (1"", p < 00) with 
respect to the Lebesgue measure on the real axis; L~ 
is a Banach lattice, the positive elements being the 
functions f(t) ~ 0 almost everywhere, whereas the quasi­
interior functions satisfy f(t) > 0 almost everywhere. 

We call the operator A quasi-interior if x > 0 implies 
Ax quasi-interior, In the above example, Let Ah be the 
bounded operator corresponding to the kernel K(t, t') 
acting from LP to L" (1"'" p,q <00) 6; then, if K(t, t') > 0 
almost everywhere, AK is a quasi-interior operator, 

So far a real Banach lattice B was considered. How­
ever we also need the concept of a complex Banach 
lattice, 7 The complexification of B of a vector space is 
obtained simply by considering the space Be = B + iB, 
but in order to make it a lattice we need some hypothes­
es on B, We shall assume B is order complete; For 
any subset /4 L 8 such that there exists an element of B 
greater than any element of A , A has a supremum in B. 
Then it is possible to define a modulus of any element 
z = x + iv E Be by means of the formula 

Iz I = sup Icosex + siney I. (2.3) 
0,"8<2. 

Then, extending the norm of B by means of IIzll = III z III 
for any z EBe, one may verify that the analog of Eq. 
(2.2) is satisfied and therefore Be is a Banach lattice. 
We say that a subset A cBe is order bounded if there 
exists some x co: B such that I z I "'" x for any z co:A. An 
example of order complete space is V', 8 The complex­
ification is the obvious one, 

Now let A be an operator acting in Be, or briefly, a 
complex operator. We can define the linear modulus of 
A, only at the cost of some hypotheses on A and on B. 
We suppose B is order complete and A is order bounded: 
That is, A maps order bounded sets onto order bounded 
sets. Then the definition 

IA Ix = sup IAz I for any x co: 0: 
Izl ::::x 

makes sense, and the operator IA I is called the 
modulus of A. 9 It satisfies the inequality 

IAz I"'" IAlizl for any z t::B e
, 

(2.4) 

(2.5) 

Finally we give an example that we shall exploit 
later, Let AK be the bounded operator corresponding 
to the complex kernel K(t, t') from a complex Li> to a 
complex L" (1"'" p, q < 00).6 Then I K(t, t') I defines a 
bounded positive operator AIKI and AK is order bounded. 

Indeed, for any complexg=g(t) for which Ig(t) I ~f(t), 
where f=f(t) is nonnegative almost everywhere, we 
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have 

!AI<£! =! J K(t,t')g(t')dt'! 

~ J !K(t, t') I f(t') dt' =A IKlf. 

From definition (2.4) we also have 

IAK!.;A IKI • 

3. SPECTRAL PROPERTIES OF POSITIVE 
OPERATORS 

(2.6) 

(2.7) 

We give here some general results about the spec­
trum and the resolvent of a positive operator. They 
are both useful by themselves and necessary as an in­
troduction to the topic dealt with in the next section. 
For this purpose we need some definitions and general 
results from spectral analysis of operators. In this 
section A will be a bounded operator in a Banach space 
Be. The resolvent of A is the operator R(A, A) = (A- A)"!, 
if it exists and is bounded. The set p(A) of the complex 
A plane, where this condition is satisfied, is called the 
resolvent set of A. The complementary set of p(A), 
a(A), is the spectrum of A. a(A) is a closed and bounded 
set, 

For A, (J. E: p(A), the equation 

R(A,A) - R((J.,A)= ((J. - A)R(A,A)R((J.,A) 

holds. If B is a bounded operator too, we have the 
relation 

R(A, A) - R(A, B) = R(A, A)(A - B)R(A, B), 

A E: p(A) n p(B). (3.2) 

From the first equation one gets that, in p(A), R(A,A) 
is an analytic operator-valued function with derivatives 
given by the formulas 

~R(A A) = (_1)kkl Rk+!(A A) k = 1 2 ... (3.3) 
dAk' '", , 

Therefore, in a neighborhood of an isolated Singularity 
AO' R(A,A) admits a Laurent series expansion 

~ ~ 

R(A,A)= 6 (A- AO)"C"+ .0 (A- AO)""Dm (3.4) 
_0 ~! 

where C", D" are bounded operators in Be, defined by the 
contour integrals: 

(3.5) 

y is a counterclockwise oriented circular path with 
center at AO, contained in p(A). It is well known that D! 
= P is a projection operator, that is, p2 = P. Among 
others the following relations hold: 

D" == (A - AO)n-1p= (A - Ao)Dn-!> n = 1, 2, . . . . (3.6) 

We observe that, if Dk=O, D"=O for n""k, soweshall 
say that AO is a pole of order k if Dk", 0 and Dk+1 = O. In 
this case, AD is an eigenvalue of A and the manifold 
spanned by all corresponding eigenvectors (the eigen­
manifold) is contained in the range of the projection 
operator p. 
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A useful tool in the analysis of the spectral properties 
of an operator is the concept of spectral radius. We 
recall that the spectral radius of A is the number 

r(A)=limIIA"II!/". (3.7) 
"..~ 

It determines the convergence region of the series 
2::'0 A-"-!A". Precisely this series converges in the 
operator norm for I A I > r(A). In this region the series 
represents the resolvent R(A,A). From now on we shall 
suppose r(A) > O. 

Let us now add the condition that A is a positive 
operator. From now on in this section we shall suppose 
that B, the real Banach space subtended to Be, has a 
closed reproducing cone <C. 

Proposition 3. 1: R (A, A) is a positive operator for any 
real A> r(A). 

Using the above-mentioned series to represent R (A,A), 
we see that the resolvent is the limit of a series of 
positive operators for real A> r(A). The proposition 
follows from what has been said in the preceding section 
and from the fact that ([ is closed. 

One shows 7 that, if B is a Banach lattice, the condi­
tion (real) A> r(A) is necessary (besides being sufficient) 
in order for R(A,A) to be a positive operator. 

Proposition 3.2: Let A and B be two positive opera­
tors in a Banach lattice B, such that A ~ B. Then r(A) 
.; r(B). 

We show first, by induction, that A".; B". Suppose 
A "-I ~ B"-I and observe that B - A, B + A, B"-I _ An-I, 
B"-! + A "-I are positive operators. Then 

(B - A) (B"-! + A"-!) =Bn - A" + BA"-!- AB"-! 

and 
(B + A) (B"-I _ A"-!) = B" - A" - BA"-! + AB"-! 

are positive operators. Thus also their sum B" - A" is a 
positive operator. For any x E: <C the inequality B"x "" A"x 
holds. Therefore, from Proposition 2.1, we get 

The proposition follows from the definition of spectral 
radius. 

Proposition 3.3: Let the cones (1' and (1'* be reproduc­
ing (as is the case if B is a Banach lattice), and A be 
positive. Then the point of the A plane A = r(A) is in the 
spectrum of A. 

The proof!O is based essentially on the well-known 
result that the intersection pOint of the real axis and 
the convergence circle of a power series with nonnega­
tive coefficients, is a singular point of the analytic 
function represented by the series •. 

This proposition does not characterize the nature of 
the singularity. In order to have more detailed informa­
tion about the nature of the singularity in r(A), one has 
to consider speCial classes of operators. If for example, 
A is compact, then necessarily A =r(A) is a pole of 
finite order of the resolventR(A,A). For the spectrum 
of a compact operator is a set of isolated points (if we 
exclude A = 0), each representing a pole of the resolvent 
and therefore being an eigenvalue of A. 3 
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As far as eigenvectors corresponding to A=r(A) are 
concerned, we have the following results. 

Proposition 3.4: Let A be a positive operator and 
A=r(A) be a k-order pole of R(A,A). Then the corre­
sponding Dk is a positive operator. 

From Eq. (3.4) it follows that lim~_,.(A) (A - r(A))k 
x R (A, A) = Dk in the operator norm topology. H we take 
the limit from the right on the real axis, we can verify 
the assertion by applying Proposition 3.1 and remem­
bering that the cone of positive operators is closed" 

Let us call A * the transpose of A. 

Proposition 3.5: In the same hypotheses of the pre­
ceding proposition, rCA) is an eigenvalue both of A and 
of A *, to which there correspond respectively an eigen­
vector x> 0 and an eigenvector x* > 0, 10 

The fact that rCA) is an eigenvalue is immediate, 5 

The rest of the proof is a corollary of the preceding 
proposition. Indeed, as by hypotheses D k* 0 and Dk+l = 0, 
some y EO cr exists (cr is reproducing!) for which x = Dky 
* O. Obviously x EO cr by Proposition 3.4. Now by Eq. 
(3, 6) we have (A - r(A)x = Dk+l Y = 0, So x is the desired 
eigenvector. From the property R(A,A*) =R(\,A)* 11 if 
\E peA), we can see that D: > 0 and D:+l = O. Repeating 
the argument used above, we conclude that there exists 
an eigenvector x* > O. 

More detailed information about spectral properties 
is obtained if we restrict the hypotheses on the operator 
A, If A is quasi-interior (see Sec, 2), rCA) is a first 
order pole of R(A, A) with one-dimensional eigenmani­
fold 7 (when the pole is first order, the eigenmanifold 
COincides with the range of the corresponding 
projection). 

Proposition 3.6: H A is quasi-interior, rCA) has a 
quasi- interior eigenvector, Moreover A *x6 = r(A)x~, 
where xt has the following property: For any x> 0, 
(xL x) '- O. 

The first statement is obvious. From Proposition 30 5 
we know that there exists an eigenvector x6 > 0 of A * 
corresponding to rCA). Thus for any x> 0 we have 

1 1 
<X6,x>=r(A) (A*xt,x>=Y(A) (x6,Ax»0, 

as Ax is a quasi- interior point. 

Proposition 3,7: Let T be a complex operator (i. e. , 
acting in BC

), such that I T I eXists. Let Ao, which is the 
point of its spectrum of largest modulus, be an eigen­
value of T, and let A and A - I Tl be quasi-interior. 
Then I AO I < rCA). 

For some z EOBc we have Tz =AoZ, IA I lz 1= ITz I 
~ I T I I z I ; so that from Proposition 3. 6 

0< IAol<X6, Iz I> ~ <x6, 1 Tllz I> «X6,Alz I> 

=r(A)(xt,lzl>, 

Therefore, I Ao I < r(A)o 

4. COMPLETELY MONOTONIC OPERATORS 

Let us consider the function A(j), defined in a do­
main D of the complexj plane, with values in L(Be), 

2056 J. Math. Phys., Vol. 18, No. 10, October 1977 

which is the space of bounded operators in the com­
plex Banach space BC

• We shall call it an operator 
valued analytic function if the dependence on j is analy­
tic, that is, if A(j) is differentiable in D with respect 
to the uniform topology of L (Be). It is well known that 
this is equivalent to the analyticity of all numerical 
functions (x*,A(j)x) forxEOBc and x* Ec:Bc*. 

Proposition 4.1: Let A(j) be an analytic operator 
valued function in a domain D of the j plane, Then the 
resolvent R(A,A(j) is holomorphic in the Cartesian 
product D XA plane, save the set of pairs (Ao,jO) such 
that AO belongs to the spectrum of A(jo). 11 

We shall study a particular family of operator-valued 
functions, that we shall call completely monotonic 
operator-valued functions, or, briefly, completely 
monotonic operators. As in the preceding section, B 
has a closed reproducing cone cr. Letjo be a point of the 
real j axis. We say that the analytic operator-valued 
function A (j) is completely monotonic in the open real 
semiaxis j > jo, if, there, the operators 

kdkA(j) 
(- 1) -.- ~ 0 for k = 0 1 2 ".. (4.1) dJk ' , , 

It is clear that for all x EO a; and x* EO a; the numerical 
functions <x* ,A (j)x> are completely monotonic (see 
Appendix A). Conversely i.f B is a Banach lattice the 
preceding property is a sufficient condition in order for 
A(j) to be a completely monotonic operator, on the 
basis of Corollary 2.5. From the previous definition it 
is evident that the sum and the product of two com­
pletely monotonic operators are completely monotonic 
operators. Of course, for] real, A (j) is understood as 
an operator in B but it is definite also as an operator in 
BC; for] complex, it must be understood as an operator 
in Be. 

As an exemplification, let A be a positive operator. 
Then by Eq. (3.3) and Proposition 3.1, it follows that 
R(A,A) is a completely monotonic operator in A for real 
A' rCA). 

From Eq. (3,2) one gets 

(4.2) 

Therefore, if real Ao > r(A(j)) and A en is completely 
monotonic for] > ]0, R (Ao ,A (j)) is completely monotonic 
in the subset of the real] axis in which the two inequali­
ties are Simultaneously satisfied. 

We now give two general propositions involving the 
spectral radius r(j) =r(A(j)) of an operator A(j) com­
pletely monotonic for] '>]0 acting in a Banach lattice B. 

Proposition 4.2: r(j) is a nonincreasing function for 
real] > ]0' 

If ]1 > h, by condition (4.1), for every x EO a; and every 
X*EOa;*, we have <x*,A(jl)X>~<X*,A(h)x>, so that 
A(]1)~A(j2)' Then, by Proposition 3.2, r(jl)~r(h). 
As a matter of fact the hypothesis of complete mono­
tony is redundant: It is enough that the above operator 
inequality be satisfied. 

Proposition 4.3: Let J be the rightmost point of the 
real] axis satisfying the equation r(j) = Ao, and i ~ ]0' 
Then R(Ao,A(j)) is analytic in j on the right of the axis 
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Rej =J. Moreover the singularities on this axis are not 
stronger than the singularity at j =}, since for any x 
E (I; and x* E (1;* and for Rej > J one has 

I <X* ,R(Ao,A(Rej + i Imj»x) I 
<s <X*,R(Ao,A(Rej»x). (4.3) 

By Proposition 4.2 and by assumption, it follows that 
r(j) < AO for j > J. Therefore, by Proposition 4.1, 
R(AO,A(j» is analytic and completely monotonic in j 
>). IfXE(I; andx*E(I;*, <X*,R(AO,A(j»x) is a complete­
ly monotonic numerical function, and by the properties 
of completely monotonic functions (see Appendix A, 
PropOSition A. 1) we can write inequality (4.2), from 
which the completion 0 f the proof follows. 

In general there are other singularities besides the 
one at j = J, on the axis Rej =]. In order to exclude this 
possibility we have to strengthen the hypotheses on 
A(j). Let, for example, IA(j) I exist, A(j) be compact, 
A (Rej) and A (Rej) - IA (Rej + i Imj) I be quasi- interior, 
for Rej > jo. Then the hypotheses of Proposition 3.7 are 
fulfilled and we can conclude that the only singularity of 
R(AO,A(j» on the axis Rej=]is placed atj=). An appli­
cation of this fact is found in a physical problem, t2 
where A(j) is a compact completely monotonic operator 
for Rej > jo corresponding to a kernel K(t, t' ,j) from LP 
to L", satisfying the inequality IK(t, t', Rej + i InV) I 
<K(t,t',Rej), and such thatK(t,t',j»O for realj>jo. 
Bearing in mind what has been said at the end of Sec. 
2, one can realize that all the above hypotheses are 
verified and, therefore, the previous conclusion holds. 

In the following sections we shall limit ourselves to 
the analysiS of the rightmost singularity on the real j 
axis and nothing will be said about other singularities 
on Rej =}, apart from the fact that the singularity at 
j =] is always isolated. The reason is briefly explained 
in Appendix A. We shall call the singularity at j =], the 
leading j- plane singularity. 

5. LEADING SINGULARITY OF THE RESOLVENT 
In this section we shall consider an operator-valued 

function A(j), analytic in a hali-plane Rej > jo, acting in 
a complex Banach space Be. The spectrum of A (j) will 
vary in general in an extremely complex way as j 
varies. Given the lack of general mathematical results, 
we only analyze the case in which the rightmost singu­
larity in the A plane is a pole of the resolvent 
R(A,A(j», This choice is due on the one hand to the fact 
that this property characterizes wide classes of opera­
tors (compact and quasicompact operators, operators 
with compact resolvent, ' , , ) and on the other hand to the 
simple manageable structure taken up in this case by 
the spectrum on the j plane. 

As a first step we state precisely the mathematical 
problem we have chosen to study. Let us suppose that 
for j =j1> the spectrum of A(jj) can be separated into 
two spectral sets5 at =at(A(jt» and a2 =a2(A(h». We 
take a Jordan curve Yj surrounding at and outside a2 
(remember that at and a2 are closed separated sets). 
One ShOWSIl that, in a sufficiently small neighborhood 
U ofjt, at(A(j» and a2(A(j» are still spectral sets, 
while Yt is in the resolvent set of A(j) and still separates 
them. 
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Let us conSider the projection operator 

P a (j) =2~f R(A,A(j»dA, 
t 7Tl Yj 

(5.1) 

where the integration path is anticlockwise oriented. It 
is an analytic operator-valued function in U. Let!fJI (j) 
=Pa (j)Be be the range of Pal(j), that is the subspace 
assolciated to the spectral set at(jl. One can showlS that 
in a neighborhood U t of jl, U t <;;; U, the dimension of 
In I (jl is constant as j varies. 

Let A, be the restriction of the operator A to the sub­
space !fJ I , andA 2 the analogous restriction to!fJ2=(1 
- P a ) Be (here we understand the variable j which is in­
esselntial for the discussion). Then the spectrum of Aj 
(A2) is given by a l (a2),5,11 and the eigenvalue problem 
for A is the same as the one for AI' as long as the 
eigenvalues contained in a, are concerned. Moreover the 
resolvent of A commutes with Pal and therefore R(X,A) 
=R(A,AP,,) +R(A,APa ). This implies that R(X,A2) is 
regular in'the region [imited by YI and conversely 
R(A,A,) is regular outside it. Since we shall be interest­
ed in the structure of the singularities contained in a 
particular region of the A plane, when YI contains this 
region we can limit ourselves to the analysis of 
R(X,A,). The true resolvent differs from this only by a 
regular part. 

Now let us suppose that/))I has dimension N < 00. Then 
A, (j) may be represented by means of a finite order 
matrix and the eigenvalue problem becomes the problem 
of the solution of an algebraic equation in A, whose 
coefficients are analytic functions of j in the set Ut • 

The solution is knownll.t4): The roots (that is, the eigen­
values) are the branches Ak(j) of one or several (locally) 
algebraic functions, k = 1, 2, ..• , rand r <s N. More pre­
cis ely, the branches Xk(j) group together in cycles 
{Xkt(j)}, .. "{XksU)}, k l =l, ... ,YI>'" ,ks=rs_1 +1, ... ,r. 
If a cycle contains a single element Xii(j), this is an 
analytic func tion of j in the neighbor hood U t of j t. In­
stead, if a cycle contains p (> 1) elements, e. g. , 
Xdj), A2(j), ... ,Ap(j), then they represent the branches 
of a single algebraic function. In this case they are 
representable with series in fractional powers of j of 
the following type: 

Ar(j) = 0'0 + O'tWr-ljl /p + 0'2w2(r-lll/p + •• , , 

r=l, ... ,p, w=exp(27Ti/p), (5.2) 

and j in the right member means the principal value of 
j. 

From the point of view of the j plane, for fixed j there 
is a finite number (<sN) of roots. This number is N if 
the roots are all distinct. The points (in the j plane) in 
which the number of roots changes, are called critical 
points. One shows that in any compact subset of UI the 
number of critical points is finite. The branch points of 
the functions forming a cycle are always situated at a 
critical point. An example is given by the point j = 0 for 
the set of functions in Eq. (5.2). It is important to ob­
serve that the branches of a cycle are continuous at the 
critical points. 

The projection operator (see Eq. 3.5) associated with 
each eigenvalue Ak(j) is definite and analytic in the re-
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gion where Ak(j) is. Instead, in correspondence to a 
critical point, the projection may have a discontinuity. 
Moreover if Ak(j) has a branch point, the corresponding 
proj ec tion operator goes to infini ty (in norm). 11 For 
example, the projection operators corresponding to the 
eigenvalue functions of the cycle (5.2) will be given by 
the formulas .. 

Pr(j) == 6 p///pw(r-llI, 
I.-k 

(5.3) 

where P -k * 0, k > 0, and the symbols are as above. Any 
eigenvalue function and the corresponding projection 
operator are on the same Riemann sheet. The A plane 
poles associated to the branches of a cycle are of the 
same order (see Appendix B). 

Now, from the fact that the eigenvalues of a matrix 
are poles, from the preceding considerations about the 
separation of R(A,A(j» into two pieces and from Eq. 
(3.4), we may write in a neighborhood of jj) 

. r [P(kl(j) D~kl(j) 
R(A,A(J») ==E (A- Ak(j)) + (A- Ak(j»)2 

D(kl (j) ] 
+ 0" + (A _ ~:(j))mk +RO(A,j), (5.4) 

where RO(A,j) is holomorphic for A contained in 'Yl and in 
p(A(j». A simple, though important observation, in this 
context concerns the nature of the singularities in the j 
plane for the resolvent given above when A is fixed: The 
singularities can only be poles, the cuts disappear, as 
one can verify by direct computation. Indeed this is a 
consequence of subdividing the spectrum into two parts 
and of the fact that the projection operator correspond­
ing to the part under consideration has a finite dimen­
sional range and is an analytic operator. 

We are now able to state the main problem of this 
section. The symbols have the same meaning as above. 

(H) Let A(j) be for real j > jo a completely monotonic 
operator acting in a real Banach lattice B. Let the spec­
trum of A (jl) for real h > jo, be separable into two spec­
tral sets al and a 2, such that the projection operator as­
sociated with a 1 has finite range and al contains the right­
most singularity in the A plane. 15 We wish to find the 
rightmost singularity in the j plane in a neighborhood of 
jl and give its explicit contribution to the resolvent 
R(A,A(j». 

In order to avoid repetitions, from now on j will be 
a real variable unless otherwise specified, First 
we observe that by Proposition 3.3 and by the positivity 
of A (j) (j real!), the rightmost singularity in the 
A plane is situated on the real A axis at a distance from 
the origin equal to the spectral radius, From what 
has been said above this is true in a suitable (real) 
neighborhood of h, so that in this neighborhood the 
spectral radius r(j) is formed by various pieces of the 
eigenvalue functions Ak(j) , cOinciding for fixed j with 
only one of them except in the critical points at which it 
coinCides with two or more of them. By the properties 
of the functions Ak(j) it follows that r(j) is continuous 
everywhere in the same neighborhood and differentiable 
except perhaps at the critical points. 

From now on let Ao * 0 be a point of the positive real 
A axis. The equation AO == r(j) admits by Proposition 4.2 
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only one solution j ==1 16 [we exclude the constancy of 
r(j), as it will be justified later]. On the basis of what 
was said at the end of Sec. 4, j ==i is the leading j plane 
singularity of R(AO,A(j». Our next task is to study this 
singularity and to give it an explicit representation in 
the resolvent. We proceed first to analyze a simple 
case . 

(a) The leading singularity in A is a firs t order pole 
and j == i is not a critical point. 

Then, according to what has just been said, r(j) 
coincides in an open (real) neighborhood V of iWith only 
one eigenvalue function, for example A(j), and there­
fore it is differentiable. We intend to show that 

dA(/) I =' A'(j) < o. 
dJ j.J 

(5.5) 

This result implies, as we shall see, that the leading 
singularity in the j plane is also a first order pole, 

As a first step we observe that, as A (j) corresponds 
to a first order pole, we have 

(A(j) - A(j»P(j) ==0, (5.6) 

where P(j) is the projection operator corresponding to 
A(j). We differentiate this equation and multiply it from 
the left by P(j). Taking into account that P(j) com­
mutes withA(j), we get 

P(j)A '(j)P(j) - A(j)P(j) == O. (5.7) 

N ext we build a positive eigenvector corresponding to 
A(j), By Proposition 3.5 it follows that the vector y(j) 
==P(j)x, for some XE: (1;, is an eigenvector of A(j) be­
longing to the cone (I; for any j E: V. We stress that this 
happens because in V, A(j) is in fact the spectral radius. 
As y (J) * 0 17 we may find a functional x* E: (I; * such that 
<X* ,y(n) > O. Let us call y*(j) the functional P*(j)x*, 
where P*(j) is the tranpose of P(j). Then from Eq. 
(5.7) we obtain 

A'( .)= (y*(j),A'(j)y(j» 
J (:l'*(j),y W) (5.8) 

This equation holds in a suitable neighborhood of j :== j , 
as (y*(J),y(J):==<x*,y(J)*O and the denominator func­
tion is continuous. Now (y*U),A'(j)y(j»j.i 
= (y*CJ),A'(j)y(J»J'}' and it is the derivative atj ==i 
of the function (y*(J),A(j)y(i»=(x*,A(j)y(il). This is 
a completely monotonic function for j > jo (see Sec. 4), 
different from zero at j =J. Therefore, its derivative 
cannot be zero, otherwise it must be zero every­
wherelB (see Appendix A), Finally we can conclude that 
A'(J)* O. The same proof can easily be extended to any 
pOintjE: V. A'U) is obviously negative. IS 

We may rewrite A(j) in a neighborhood of i, as 

A(j):== AO + A'(ilf(j)(j - n, (5.9) 

where f(j) is an analytic function such that f(J) = 1. In 
that case the resolvent [see Eq. (5.4)] takes the follow­
ing form: 

. P(j) 
R(AO,A(J» = A' (J>f(j)(i _ j) +RO(A,j). (5.10) 

Equation (5.5) implies that the leading pole in the j 
plane is first order. Equation (5.10) holds in a suitable 
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complex neighborhood of }. 

The initial hypothesis of this subsection (that j = J is 
not a critical point) is certainly satisfied if the leading 
pole in A has one-dimensional eigenspace. For the 
consequent one-dimensionality of the range of the pro­
jection operator P(j), prevents the eigenvalue splitting. 
This situation occurs if, for example, the operator 
A(j) is quasi-interior for real j (see Sec. 3). 

(b) The leading singularity in A is a first order pole 
and j =] is a critical point but not a branch point. 

The statement of the problem deserves some explana­
tion. Let At (j) and A2 (j) be the only two- eigenvalue func­
tions that meet at j =], and let them be regular and cor­
responding to first order poles. Then they are repre­
sentable by means of the series 

At (j)=AO +al1(j - J) +a12(j _])2 +0 00, 

(5.11) 

which hold in a neighborhood of]. Let P 1(j) and P 2(j) be 
the corresponding projection operators. They are analy­
tic operator-valued functions except perhaps at j = J, 
where they may have a discontinuity (see above). In­
stead, the projection operator P(j)=P1(j) +Pz(j), which 
corresponds to the spectral set containing Aj (j) and 
A2U), is analytic everywhere in the previously men­
tioned neighborhood. As one can immediately check, 
we may give the following representation of P j and P 2: 

P ( .) = (A (j) - Aj (j»P(j) 
2J A2(j)-AI(j) 

(5.12) 

From these equations it is evident that the two pro­
jection operators in general go to infinity as j -]. Using 
representation (5.12) we may write the analog of Eq. 
(5.4) in following way: 

( A( .» [Pj(j) pz(j)] (.) 
RA, J = A-Aj(j)+A-AZ(j) +ROA,J 

(5.13) 

Therefore, though Aj (j) and A2 (j) are first order poles 
of the resolvent for ji}; R(A,A(J) will have in general 
a second order pole at A = AO' The preceding analysis 
may easily be extended to the general case in which n 
regular eigenvalue functions, corresponding to first 
order poles, meet at j =1 and take the value AO' We use 
the formula 

i=1" .. ,n, 

(5.14) 

Generally the P / (j) are infinite at} and the resolvent 
of A (]) may have a priori an nth order pole in A at A 
= AO' In general we are not able to go ahead with the 
analysis as in subsection (a). However, we can do it in 
the special case in which the projection operator corre­
sponding to the leading eigenvalue for j "" l[let it be 
Aj (j) 1 is bounded uniformly in a neighborhood of j. From 
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now on, in this subsection, it is understood that we 
assume this hypothesis. Then it is easy to see that P j (j), 
given by Eq. (5.14), is regular for j =J; but P j (]) is no 
longer the projection operator corresponding to At (]) 
= AO, the relevant projection being now P(J). That is, 
the projection operator associated with Aj (j) has at j 
=1 a removable discontinuity. Remember that P j (j) is a 
positive operator for j >], as it corresponds to the 
spectral radius. Therefore, also PI (J) is positive. At 
this point one can repeat step by step the proof given in 
subsection (a) [for example, Eq. (5.8) holds for j "" n, 
and conclude that Aj(j) < O. 

It can happen that the spectral radius r(j) coincides 
with Al(j) in a right neighborhood of] and with another 
eigenvalue in a left E-eighborhood of J; r(j) may have an 
angular point at j =j. But also the left derivative is 
negative. For, we observe that (d/dj)(ReAk(j) I }=},,; Aj(J), 
k = 2·· . n, otherwise A/(j) would not be the leading eigen­
value in a right neighborhood of ]. 

Now we are able to write down the explicit represen­
tation of the resolvent R(Ao,j). For brevity we give it 
only when AO is a first order pole of R(A,A(]) namely 
(A(])- Ao)P(I) =0, 

( .) ~ P Ok 1 20 R AO,] =LJ ( "(.» -(. ~) + regular part, (5.15) 
k=j - "k J J - J 

where P Ok is the coefficient corresponding to the zero 
power in the Laurent expansion of Pk(j) near j =]. 

For further details see the end of Appendix C. 

(c) The leading singularity in A is a first order pole 
and j =]is a branch point. 

We have at least a cycle of solutions {AI (j), •.. ,Ap(j)} 
representable in the form given by Eq. (5.2) (here ao 
= AO)' Then we show that a 1:= az =.00 = ap_j = O. Suppose 
first that one of the eigenvalue functions [e. g. ,AI (j)1 
coincides with the spectral radius in a right neighbor­
hood of]. Then the coefficients of development (5.2) 
are real. As r(j) is a nonincreasing function of j, we 
must have a 1 ,,; O. But, then, between the coefficients 
ajw"-t, r=1, ... ,p, there is at least one, specified for 
example by the index k, such that Re(atwk-t) "" O. There­
fore, in a right neighborhood of I we would have 
Re(Ak(j» "" Al(j), against the hypothesis that AI(j) is the 
leading eigenvalue, unless al =0. The same argument 
may be repeated to show that a 2 = 0 and so on; on the 
contrary, it is inapplicable to a p • 

However, generally, the leading eigenvalue may not 
belong to the cycle at issue and there may be several 
cycles. The preceding argument applies to all cycles 
meeting at j =}, with the only difference that at will be 
a complex number (with a nonpositive real part), This 
detail does not modify the pattern of the proof given 
above. Therefore, the general form of the eigenvalue 
functions belonging to a cycle and assuming the leading 
value AO at j = i, is 

A,.(j) =AO + Ct'p(j - Jl + ap+l(j - f)1+lIp + o. 0, 

r=l, ... ,p. (5.16) 

We now want to give an explicit representation of the 
leading term in the j plane of the resolvent R(Ao,j). Let 
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us suppose that p eigenvalue functions, belonging to the 
same cycle, meet in Xo (the leading eigenvalue for j =J). 
One of these coincides obviously with the spectral ra­
dius. The total projection operator P(j) = '[,~=IPr(j) [see 
Eq. (5. 3)] is regular at j = J and pm is the proj ec tion 
operator corresponding to Xo, Therefore, (A(J) - Xo)P(J) 
=0 and P(J) is a positive operator (see Proposition 3.4). 
We show in Appendix C that O/p < O. Consequently the 
resolvent R(Xo,j) has the following form: 

R (Xo,j) = ( ~ " ") + regular part, 
- O/p } -} 

(5.17) 

where Q is a linear combination of the operators 
Po, P-t> ••• , P-k that appear in Eq. (5.3), with compli­
cated coefficients built with O/p, O/p+l' , • , ,O/p+k' 

(d) The leading singularity in X is a higher order 
pole. 

In this case the resolvent has a more complex form, 
Eq. (5.4), and the projection operator corresponding to 
the leading eigenvalue is not necessarily positive. We 
can no longer apply the procedure outlined in (a) in order 
to show that the first derivative of the leading eigenvalue 
does not vanish. One conclusion still holds: if j = J is a 
branch pOint for the roots assuming the leading value 
Xo, then they have in a neighborhood of J the development 
(5,16). 

In the following section we consider a particular class 
of operators A(j), for which the problem can be fully 
solved. 

6. LEADING SINGULARITY OF THE RESOLVENT: 
A SPECIAL CASE 

Let A(j) be an analytic operator satisfying the hypo­
theses (H) and moreover let 

(6.1) 

for any it and h. The first consequence of this new 
condition is that all projections are constant. Indeed, 
using Eqs. (3.3) and (4,2) we have 

dP(j) = ,_ dA(j») -1-1 dR(X,A(j» dX=O (6.2) 
dj \ dj 27Ti y dX ' 

where y is a Jordan curve surrounding the singularities 
at issue. Thus the projections, as functions of j, can 
have only removable discontinuities corresponding to 
the critical points. They cannot go to infinity as j ap­
proaches a critical pOint. Thus there are no branch 
points. All eigenvalue functions are everywhere analytiC 
Another consequence is thatA(j) commutes withA'(j). 

Let X(j) be the only root taking the value Xo at j =j, 
and corresponding to a m-order pole in the resolvent. 
Then, 

(6.3) 

where Dm(j) = (A(j) - x(j)m-lp and P is the projection 
operator associated to X(j). Deriving both sides of Eq. 
(6.3) we get 

(A '(j) - X'(j»Dm(j)::=: O. (6.4) 

By Proposition (3.4), Dm(j) is a positive operator. Un­
less Dm(j) has a zero for j =J (see Appendix D), we can 
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find at least one vector x E ([ and one functional x* E ([*, 
such that (x*, DmG)x) > O. Then the equation 

(6. 5) 

holds in a neighborhood of J. The number 
(x*,A'(J)Dm(J)x) is the value taken up by the derivative 
of the function g(j)= (x*,A(j)Dmmx). Butg(j) is a com­
pletely monotonic function, therefore it does not vanish 
atj=J, from Eq. (6.3). Sog'(J)*O. Finally 

X'(J)<O. (6.6) 

N ow let j = J be a critical point. Namely, at j ::=: J two 
or more eigenvalues meet. The situation is the same 
as in Sec. 5(c). So we conclude that Eq. (6.6) holds for 
any root, at least in those points (if they exist) where 
the root coincides with the rightmost eigenvalue in the X 
plane. 

We now give the expression of the resolventR(Xo,j) 
when J is not a critical point, the extension to critical 
points being immediate, 

R('·) DJj) I d" t (6 7) "o,} ::=: (_ X'(j»m(j _ j)m + non ea mg erms. , 

In physical problems we need to know quantities such as 
Rk(Xo,j). Using Eq. (3.3) we see that the leading term is 
given by the formula 

k . (m +k- 2) DmCi) 
R (Xo,}) = k _ 1 [ _ X'(j)(j _ 1)]m+k -1 

+ nonleading terms. (6.8) 

In the second part of this section we deal with a 
problem relevant to the multiproduction theory. I We 
are faced with the question of the coincidence between 
the leading singularity of A(j) and the leading singularity 
of R(Ao, A (j)). The problem is different from the one 
studied so far, in the sense that in Sec. 5 we set J> )0' 
whereas here we examine the consequences of the con­
dition J = ]0' 

Let A(j) be a completely monotonic operator for j > jo, 
with a q-order pole at j =jo. Therefore, A (j) can be 
developed in a Laurent series in a neighborhood of jo. 

"" 
A(j) = 6 Aj(j - jO)i, (6,9) 

i=-q 

where Aj (i = - q, - q + 1, ••• ) are bounded operators in 
B. However let the hypotheses (H) and condition (6.1) 
still hold. A (j) is not defined at j :=: jo; therefore we can­
not define the spectral radius, the eigenvalues, •••. We 
resort to the subsidiary operator A (j), so defined 

(6.10) 

It is clear that A (j) is analytic in a neighborhood of jo 
and positive in a right neighborhood of io, therefore also 
at jo. We observe that A (j) is in general not completely 
monotonic. The relation between the spectral radii r(j) 
and r(j) (where they exist!) is given by 

(6.11) 

This relation obviously also holds for complex j. As 
A (j) is positive for j ~ jo, r(j) coincides with one of the 
analytic roots of A (j), e. g., XI (j), in a right neighbor-
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hood of jo (including jo). We recall that r(j) is contin­
uous for j > jo and nonincreasing, by Proposition 4.2. 
Therefore limJ~ Jo+ r(j) exists. 

Three possibilities may occur: 

(i) lim r(j) > AO 
j~ Jo+ 

The leading singularity of R (AO' A U» lies on the right of 
jo. This is the situation previously studied. 

(ii) lim r(j) < AO 
i~ 10+ 

The leading singularity in R(AO,A(j» comes from the 
pole of A (j) at j.= jo. 21 

(iii) lim r(j) = AO 
j- iO+ 

R(AO,A(j» has a leading singularity at jo, coming from 
two singularities of R (A,j), one at j =jo and the other at 
A =r(j), that overlap as A - AO' 

As we said above, we shall study the last case. 

Let us define the analytic function Al (j) by means of 

(6.12) 

It coincides with the leading eigenvalue of A(j) for j"* jo' 
In fact, if ~1 (j) corresponds to an rn-order pole of the 
resolvent, that is, if the analog of Eq. (6.3) holds [we 
call Dm(j)=(A(j)- ~(j»m~lp, the projection P being the 
same both for A(j) and for A(j)], we have 

(6. 13) 

and, from Eq. (6.4) 

(6.14) 

Equations (6.13) and (6.14) hold in a right neighborhood 
ofjo (includingjo), as AU)Dm(j) andA'~j)Dm(j) are finite 
atj=jo, because of continuity. So, if DmU) does not 
vanish atj=jo (otherwise, see Appendix D), we may find 
a vector x EO: and a functional x* E 0:*, such that 
<X*, DmCi)x) > 0, and we can write 

(6.15) 

Equation (6.15) holds foS j ?- jo close enough to jo. Using 
it, we can show that A'(j) < 0 (see Appendix D). 

In order to give a representation of the resolvent 
R(A,A(j» analogous to Eq. (6.7) we refer to the resol­
vent R (~, A (j» where ~ = (j - jO)qA. Due to the resolvent 
homogeneity, we can write 

R(A,AU» = (j - jo)qR(~,A(j). 

This relation holds for I ~ I > r(j), that is, for I A I > r(j) 
according to Eq, (6.11), and for Rej > jo. If ~(j) is the 
only root such that AG) = AO (the generalization to a criti­
cal point is straightforward) we can write, by Eq. (5.4), 
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R(A,A(j) 

D (.) 
'11.) 

The functions Ro and Ro are holomorphic for Rej > jo and 
for A belonging to a suitable neighborhood of AO (includ­
ing AO!)' For j =jo, R6 may have a singularity indepen­
dent of A. 

In the last part of this section we briefly discuss the 
consequences of the results so far obtained in the frame­
work of the multiproduction theory. For a more de­
tailed account we refer the reader to Ref. 1. 

Observe that PRo = 0 and P completely reduces A (j). 5 

Roughly speaking A(j) is separated into two parts, one 
of which gives rise to the principal part of the resolvent 
and the other to Ro. This is the general mathematical 
formulation of those models that in the physical litera­
ture are called two-component models. Precisely the 
part giving rise to Ro is called the "properly diffractive 
component, the other is the "properly multiperipheral" 
component. Ro may have for j =jo a higher order pole 
(or a more complex singularity) than the one contained 
in the principal part for A = AO' This corresponds to a 
purely diffractive model, and from the multipheripheral 
point of view it is uninteresting. So we must suppose 
that the Singularity contained in Rt is at most as strong 
as the one contained in the principal part. The highest 
order of the pole in Eq. (6,17) for A =AO is (m -l)q+rn. 
In this case the coincidence of the initial pole with the 
final one is possible only if q=l, 111=1. However the 
order of the pole can be lowered by the presence of a 
zero in Dm(j) for j =jo. 1 In this way the coincidence of 
the poles is always pOSSible, as one may verify by ex­
plicity constructing models. An example is given in Ref. 
22. 
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APPENDIX A 

A real-valued function F(O is called completely mono­
tonic in the real axis interval a < ~ < b if the following 
conditions are satisfied. 

(_I)kd~~~) > 0 for a <x < band k=O, 1, 2, '''. (AI) 

One shows23 that the function F(z) =F(~ + i1) is analytic 
in every circular domain with center c, with a < c < b, 
and radius smaller than c - a. If b = + 00, the function 
F(z) is analytic in the half-plane ~ > a. 

In this paper we repeatedly use the following property: 
If a function F(~), completely monotonic in a < ~ < b, 
vanishes at a point of this open interval, then it vanishes 
everywhere. This follows immediately from the analy-
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ticity of F(z) and from condition (A1). The same proper­
ty obviously holds for all derivatives. 

Proposition A.1: If F(~) is completely monotonic for 
a< ~<oo, then 

IF(~+i1)I~FW, a<~<b, _00<1)<+00. 

Proposition A. 2: A function F(~) is completely mono­
tonic in the interval a < ~ < 00 if and only if 

FW=J~ exp(- ~t)dCl(t), 
o 

where Cl(t) is a nondecreasing function of bounded 
variation. 

The former integral is of the Stieltjes type, If Cl (t) is 
absolutely continuous, the integral may be written as 

FW=J~ exp(- ~t)f(t)dt, 
o 

(A2) 

where j(t) is a nonnegative summable function. 

The original motivation of this paper was the study of 
the Laplace transform of a positive operator A(t). 
Symbolically 

A(z)=J~ exp(-zt)A(t)dt. 
o 

(A3) 

Leaving summability questions! out of consideration 
here, this means that in a Banach lattice B, for any x 
E a: and x* E a:*, 

(x* ,A (z )x) = 1 ~ exp(- z t) (x* ,A (t)x) dt, 
o 

(A4) 

are completely monotonic for z greater than some z 0, on 
the basis of Proposition A. 2. Corollary 2.5 says that 
A (z) is a completely monotonic operator. We stress 
that in this paper we are mainly interested in finding 
the consequences of the positivity of A(t). Therefore, 
we are satisfied with deriving some abstract theorems 
about a generic completely monotonic operator. But in 
view of the applications it is interesting to wonder if, 
antitransforming a completely monotonic operator, we 
get a positive bounded operator. No theorem giving 
necessary and sufficient conditions exists on this sub­
ject. We give a typical-and significant-example. 

Proposition A.3: Let F(z) be analytic for ~ > a, F(z) 
- 0 for ~ ~ a + 6 > a when z - 00 in two dimensions, and 

r: IF(~ + i1) I d1) < 00 for any ~ > a. 

Then F(z) can be represented as a Laplace transform 
of j(t), with 

1 l'+I~ !(t) = 2----:- exp(tz )F(z) dz (~> a), 
711 '_I ~ 

where the integral is independent of the choice of ~ in 
~ > a. Moreover j(t) is continuous in - 00 < t < + 00 and 
equals zero for t < O. If for any x E a: and x* E a: *, all 
functions (x*,A(z)x), whereA(z) is completely mono­
tonic, satisfy the hypotheses of Proposition A. 3, then 
the antitransformed functions !x,x*(t) are continuous in 
t, and for fixed t they are bounded bilinear functionals 
of x and x*. Therefore, they define a linear continuous 
operator A(t), which is positive as a consequence of 
Proposition A. 2. 
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Finally we justify the choice, made in Sec. 4, of 
studying the rightmost real j-axis singularity of the 
resolvent. The reason is that this singularity is con­
nected to the asymptotic behavior of the antitransformed 
function. Let us consider the following Tauberian 
theorem: 

Proposition A.4: Let F(O be a cOll).pletely monotonic 
function in 0 < ~ < 00 and let Cl and A be nonnegative con­
stants. Then if 

A 
F(~)-~", for~-O+, 

we have 

At'" 
Cl(t)-r(Cl +1) as t- +00. 

Referring to Eq. (A2), we observe that this theorem 
gives us the average asymptotic behavior of j(t). In or­
der to have more detailed information about the point­
wise asymptotic behavior of j(t) we need to impose some 
conditions onj(t). For example if j(t) is nondecreasing, 
then from Proposition A. 4 it follows that 

At"'-! 
j(t)- r(Cl) as t- +00. 

APPENDIX B 

We demonstrate that the poles associated with eigen­
values belonging to the same cycle are of the same or­
der. Let us suppose at first that an eigenvalue, e, g. , 
AT, has a simple pole. Then the projection operator 
P r (j) satisfies 

(Bl) 

Introducing in Eq. (B1) the developments (5.2) and (5.3) 
for Ar(j) and Pr(j) and the Taylor series for A(j), we 
obtain 

t t (AoPz(j - j)(op+/) /pwl(r-o - A'pz(j - j)(o+i) /p 
0=0 Z=-k 

X w(o+z)(r-I) = 0, (B2) 

Remembering that w = exp(271i/p), we can rewrite Eq. 
(B2) as 

If Eq. (B3) holds for a given value of r, it holds for 
every r and therefore one gets 

(B3) 

(B4) 

In general, if an eigenvalue AT has an n-order pole, one 
obtains an equation with the same structure as (B3), 
whose validity is independent of the particular value of 
r; hence any pole associated with the eigenvalue Ar 
(r = 1, 2, ... ,p) is of the same order n. An essential 
condition for this proof is that any eigenvalue function 
and the corresponding projection are on the same Rie­
mann sheet (see Sec. 5). 

APPENDIX C 

Let {Ar(j)}, r = 1, ... ,p, form a cycle of eigenvalues 
of an operator A (j) satisfying all the hypotheses (H) of 
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Sec. 5. As shown in Sec. 5 (c), near the branch point 
j =;, where they take the real value AO [= the leading 
eigenvalue of A (f»), they may be represented by the 
series 

(CI) 

Let us suppose that the cycle contains the lead.!ng sin­
gularity in the A plane in a neighborhood of j =j. We may 
take, for example, Aj(j) coinciding with the spectral 
radius in a right neighborhood of J. Let us also ~uppose 
that no other eigenvalue takes the value AO in j = j. [In­
cidentally we observe that this implies p is odd; so that 
on the left on; the spectral radius coinCides with 
A(p_1>/2(j), as is easy to verify. Indeed, for ev~n p, 
there cannot be two real roots on both sides of j. ) 

Let Aj(j) be a first order pole, then (Appendix B) all 
eigenvalues of the cycle correspond to first order poles. 
The total projection P(j) is regular, and we must have 
(by hypothesis, AO corresponds to a first order pole) 

(A (]) - Ao»pm = O. (C2) 

By Proposition (3.4), pG) is positive. Referring to 
Eq. (5.3) we have pG)=pPo, so that Po is positive too. 

On this basis we want to show that at < O. As the spec­
tral radius is a nonincreasing function of j, we already 
know that at .:;; O. Let us now consider the equations 

Summing over r, we get 
p 

6 A,(j)P,(j) =A (j)P(j). 
'=1 

(C3) 

(C4) 

Computing the trace1!·24 on both Sides (remember that 
trP,=m" where m, is the dimension of the range of P" 
m =2:,m, = dimP) we obtain 

p 

6 A,(j)m,= tr(A(j)P(j». (C5) 
,=j 

The next step is to develop both sides of this equation 
in powers of jllP. Equating the coefficients at the zero 
order we have 

(C6) 

At the first order we get mat = tr(A'G)PG) +Amp'(J)). 
From Eq. (C2) and the properties of the trace, we have 
tr(AP') = tr(PAP' +P'AP) = Ao tr(PP' +P'P) =2Ao tr(PP'P) 
=0, for PP'P = 0 as one can verify by deriving the equa­
tion p 2 =P. Finally at the first order the following 
equation holds: 

mat = tr(A'(j)pm). (C7) 

Since p(J) is positive, it is easy to see that in its range 
;}J there exists a basis {e s } (s = 1, ... ,m), formed by 
positive vectors. (As a matter of fact, in order for this 
to be true it would be enough for the projected cone to 
be reproducing in iii). Let x be a positive vector be­
longing to iii; then we may write it as x ==2::.tO!ses, where 
o!s are nonnegative coefficients. We can always find m 
functionals g: such that (g:, ek ) = 0Sk' They are positive 
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in the subspace iff. Then we may write 

tr(A 'G)pm> 

m 

=6 (g:,A'(J)PmeS> 
s.1 

== f tr(A (j)pm) I -' 
J i=i 

(C8) 

Now tr(A(j)PG)) is a completely monotonic function 
different from zero for j =;JbY Eq. (C6»), so its deri­
vative cannot be zero at j =j. Therefore, al '* O. 

This proof is always applicable when we have a bunch 
of roots with the common value AO at j =], splitting up 
from this point and satisfying these two conditions: 
First, they must have equal first derivatives at;; 
second, the total projection must be positive for j =J. 

This is the case, for example, when Ao is the ~eading 
eigenvalue and all projections are infinite at j =j. For 
it follows from _Eq. (5.14) that all first derivatives of 
the roots at j = j are equal. 

APPENDIX D 

Referring to the problem stated in Sec. 6, let D",(j), 
corresponding to the eigenvalue A(j), have a q-order 
zero for j =}. We define the operator D",(j) =D",(j)/ 
(j - })~. D,., (j) is everywhere def~ned in a neighborhood 
of j = j, and it is positive for j > j; therefore it is posi­
tive also for j =}. 

Now it is easy to verify that Eqs. (6.3) and (6.4) still 
hold if we replace D",(j) by D",(j) for j =J. Because of 
continuity these equations will also hold for j =J. From 
now on the procedure for showing that A'(J) < 0, is the 
same as in Sec. 6. The formulas (6.7) and (6.8) change 
in an obvious way. 

The proof of Eq. (6.6) is rather different, if j =} is a 
singular point for A(j). We must assume that A(j) is the 
Laplace transform of a bounded positive operator A(t) 
(see Appendix A), so that one has 

(x*,A(j)D,.,(j)x) = 1
0
" exp(- jt)(x*,Il (t)D,.,(j)x) dt, (D!) 

(x*,A , (j)D",(j)x) = - fa" exp(- jt)t(x* ,A (t)D", (j)x) dt, 

where x*, x, and D",(j) have been defined in Sec. 6. 
From Sec. 6 we know that AG) > 0 and therefore 

J" exp(- jt)(x*,A(t)D",(j)x)dt;;, l > 0, o 

(D2) 

(D3) 

for j belonging to a suitable right neighborhood U of;. 
From inequality (D3) it follows that also the integral in 
Eq. (D2) has a positive least upper bound in U. This is 
evident if 
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for j EO V . Otherwise, we have certainly 

J' A exp(- jt)(x*,A (t)Dm(j)x) dt ?-l2 > 0, o (D4) 

for j E V. Remembering that (x* ,A (t)Dm(j)x) is contin­
uous in the two variables, we have for 0 ~ y ~ 1 and j 
EV 

(D5) 

where K is a suitable constant, such that 0= Z2/2K < 1. 
From the inequalities (D4) and (D5), one gets 

l' exp(- jt)(x*,A (t)Dm(j)x) dt ?-ZJ2. 
a 

(D6) 

Then 

j l A 

o exp(-jt)t(X*,A(t)Dm(j)x)dt 

I ' A > exp(- jt)t(X*,A(t)Dm(j)x)dt 
a 
(1 A z2 

> 0Ja exp(-jt)(X*,A(t)Dm(j)x)dt>~. (D7) 

Therefore, 

A'(j) = li~ (x* ,A'(j)Dm(j)x) < O. 
j- j 
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The left- (right-) regular projective representation of a finite group G and the corresponding "projective" 
representation of the left-group algebra are defined for a given standard factor system, and special features 
of these constructions are discussed. Starting from a given projective unitary irreducible representation of a 
normal (but not necessarily Abelian) subgroup N of G, we obtain by induction the matrix elements of the 
projective unitary irreducible representations of G, where the corresponding group algebra is used as aid. 
These considerations are of interest for the construction of projective unitary irreducible representations of 
little cogroups of nonsymmorphic space groups. For the present method allows us to construct, for a q 
lying on the "surface" of the Brillouin zone, these projective representations out from unitary irreducible 
representations belonging to q's of "lower" symmetry. This method is used to determine for all little 
cogroups of the nonsymmorphic space group P n 3 n complete sets of projective unitary irreducible 
representations. 

I. INTRODUCTION 

A topic of interest in mathematicaP-3 and physical4- 9 

literature is projective representations of finite and 
continuous groups. The present paper deals mainly with 
the problem of constructing by means of induction1.2 all 
projective unitary irreducible representations (projec­
tive unirreps) of a finite group G for a given standard 
factor system1,2.9 out from the projective unirreps of a 
normal (not necessarily Abelian) subgroup N of G. In 
particular there is a direct application to the problem of 
constructing in a systematic way all projective unirreps 
of the little cogroups which are isomorphic to one of the 
subgroups of the point group of the crystal whose sym­
metry group is a nonsymmorphic space group. In this 
connection it is well known that the determination of the 
projective unirreps of the little cogroups is one of the 
several methods4- a ,9-14 which are used to calculate the 
ordinary vector unirreps for the corresponding groups 
of the ii-vectors. 

Instead of using standard methods2.15.16 we prefer to 
use the corresponding group algebra as an aid to the in­
duction procedure. At the first moment it seems to be a 
matter of taste to carry out the induction procedure with 
the aid of group algebra. However, when comparing 
the present method with the standard method it seems to 
be justified to prefer the described method, since the 
induction procedure becomes in this case more apparent 
and the explicit determination of the matrix elements of 
the induced projective unirreps of G is achieved in a 
practicable way. This comes from the fact that the 
group algebra of the supergroup is especially suited as 
representation space, if calculating induced representa­
tions, since the construction of ideals and their decom­
position in further left ideals can be carried out in a 
very transparent form. 

The material is organized as follows: In Sec. ll.A we 
define the unitary left-, respectively right-regular pro­
jective representation of a finite group G for a given 

*Partly presented at the 5th International Colloquium on Group 
Theoretical Methods in Physics, July 1976, Universite de 
Montr~al, Canada. 
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standard factor system Q, respectively Q *. In Sec. 
II.B we summarize the properties of projective uni­
reeps9 of G for a given standard factor system Q and 
compare these projective unirreps with ordinary vector 
unirreps of G. The definition of the so-called "projec­
tive" left-group algebra A(G) is given in the following 
section. In order to be able to carry out the induction 
procedure we start in Sec. m.A from the assumption 
that all projective unirreps of a normal subgroup N of G 
for the given standard factor system Q (whose domain 
of definition has to be restricted to the direct product 
group NXN) are well known. In Sec. m.B we define for 
a given n~ -dimensional projective unirrep Dil of N the 
corresponding little group N{/-l}. This gives rise to the 
existence of a nil-dimensional projective unirrep B~ of 
N{/-l} which belongs however to a standard factor system 
P (=QK*) which is in general different from the given 
one. The task to determine the structure of the special 
standard factor system K is investigated in Sec. m.e. 
Thereby it can be shown that contrary to the cases nil > 1 
for the special case nil = 1 the factor system K can be 
determined quite generally. In Sec. m.D we construct 
special induced projective representations of N{/-l} which 
in general are reducible. The reduction of these projec­
tive representations can be carried out, if the projec­
tive unirreps of the factor group N {/-l} IN (belonging to 
the factor system K) are known. The structure of the 
induced projective unirreps of N{/-l} which are composed 
of the projective unirreps of the factor group N{/-l}IN 
and B~, is discussed in Sec. llI.E.2,3 The last step to 
induce out from projective unirreps of N{/-l}, the pro­
jective unirreps of G, is carried out in Sec. Ill.F. The 
special case, where G is a semidirect product group, 
is discussed shortly in Sec. III.G. In Sec. 1lI.H we dis­
cuss difficulties which may arise, if a nonnormal sub­
group H of G is chosen with its projective unirreps as 
starting point for the induction procedure. In Sec. IV 
we apply the described method in order to determine the 
vector unirreps of a nonsymmorphic space group. In 
Sec. IV.A it will be shown that the main problem lies in 
the determination of the projective unirreps of the little 
cogroups. In Sec. IV.B we show that the factor systems 
are satisfying compatibility relations which makes it 
possible to apply the described induction procedure for 
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a systematic determination of the projective unirreps 
of the little cogroups. In Sec. V we calculate quite gen­
erally complete sets of projective unirreps for all little 
cogroups of the nonsymmorphic space group Pn3n. 

II. PROJECTIVE REPRESENTATIONS 

A. Unitary projective regular representations 

Throughout this paper it is assumed that G is a finite 
group of order I GI. We call a function 

Q: GXG-C 

of modulus one a standard factor system of G if 

Q(e, x) =Q(x,e) =1, 

Q(x,yt i =Q*(x,Y), 

Q(x, y)Q (xy ,z) =Q(x,Yz )Q(Y,z). 

(2.1 ) 

(2.2) 

(2.3) 

(2.4) 

for all x, Y, Z E G. where e denotes the identity element 
of G. The definition of the Hilbert space £2(G) for a 
finite or a continuous group G, which is essential for 
the following conSiderations, is well known.I.IS-iS In 
case G is finite, L2(G) is isomorphic to a I GI-dimen­
sional Euclidean space. The scalar product for L2(G) is 
given by 

(t, g) = ~ X~G f*(x)g(x). (2.5) 

In order to define for a given factor system Q the cor­
responding "projective left- (right-) regular represen­
tation" of G, one has to modify the definition of the or­
dinary vector representation analogously. We define by 

V: x- V(x), 

[V(x )fJ( z) =Q (x, x-Iz)f (x-Iz) (2.6) 

for aU X,zEG and fE£2(G), 

the unitary projective left-regular representation V(G) 
of G, 

V(G) ={V(x): XE G}, (2.7) 

V(x)V(Y) = Q(x,Y)V(xy) for all X,YE G, (2.8) 

(V(x)f,v(x)g)=(t,g) forallf,gEL2(G). (2.9) 

The multiplication law (2.8) and the unitarity (2.9) can be 
readily verified by means of Eqs. (2.6), (2.3), and (2.5). 
For a fixed standard factor system Q it is obvious that 
the definition of the right-regular projective representa­
tion of G must be similar to that one given by Eq. (2.6). 
The unitary operators 

V': x-V'(x), 

[V' (x)fHz) = Q (x, X-IZ-I)f (zx) 

for all x, Z E G and f E L2(G) 

(2.10) 

defines the unitary projective right-regular representa-
tion, since 

V' (x)V' (y) = Q (x, Y)V'(XY) for all x ,Y E G, 

<V/(x)f, V'(x)g) = (t,g) for all f,gE£2(G) , 

(2.11 ) 

(2.12) 

is satisfied. However the parallelism to ordinary vec­
tor representations disappears completely, since the set 
of operators 

2066 J. Math. Phys .• Vol. 18, No. 10, October 1977 

{V(x)V'(y): (X,Y)EGXG} (2.13) 

does not define a projective representation of the direct 
product group GXG = {(X,Y): X,YEG} except Q is a tri­
vial standard factor system. Such ones are defined by 

Q(x,y)=w(xy)w*(x)w*(y) with Iw(x)l=1 for allxEG. 

(2.14) 

In case we introduce instead of definition (2.10) the fol­
lowing new one: 

V": x-V"(x), 

[v"(x)fl(z) = Q*(z,x)f(zx) 

for aU x,zEG and fEL2(G), (2.15) 

it can be easily shown that the set of unitary operators 

{T(x,Y)=V(X)V"(y): (X,y)EGXG} (2.16) 

forms a projective unitary representation of the direct 
product group G x G belonging to the factor system 

2,«x,Y), (x',Y'»=Q(x,x')Q*(y,Y') 

for all (x,y), (X',y')EGXG (2.17) 

T(x, Y )T(X', y') = Q (x, x')Q *(y, Y' )T(xx', yy'). (2.18) 

Note that if you restrict the direct product group G x G 
to the Kronecker product G[x]G = {(x, x): x E G}, the set 
of operators 

{T(x, x): XE G} (2.19) 

represents an ordinary vector representation of G. 

B. Projective and vector unirreps 

It is well known9 that the set of all matrix elements of 
the projective unirreps of G for a given standard factor 
system Q forms an orthogonal but not normalized basis 
of £2(G). The elements of the set 

{D~.: j3EA G (o),P,q=1,2, ..• ,na }, (2.20) 

where AGIO) denotes the set of all equivalence classes 
and ns the dimension of the corresponding projective 
unirrep, must satisfy the following equations: 

.6 D~.(x)D:r(Y) = Q (x, Y)D~T(XY), 

I ~I EG D~.*(X)D!s(x) =nii Iii Bflipyli ... 

.6 n8D~.*(x)D~.(Y) = I Gl 0XY' 
BP. 

(2.21) 

(2.22) 

(2.23) 

However, one must be aware that projective unirreps 
belonging to nontrivial factor systems have properties 
which differ essentially from those of the vector unir­
reps. Whereas for vector unirreps the identity repre­
sentation must always exist, for projective unirreps the 
identity representation cannot be realized. The theorem 
of Burnside 

.6 n~ =IGI (2.24) 
B 

however, still remains valid o Denoting the set of all 
matrix elements of the ordinary vector unirreps of G by 

(2.25 ) 
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it is well known that they must satisfy equations which 
are analogous to Eqs. (2.21)-(2.23), except for the first 
one, where the Q's have to be replaced by 1 for all 
X,YEG, Because of (2.22) and the corresponding equa­
tion for the matrix elements of the vector unirreps both 
types of functions are not normalized to unity. Further­
more to obtain a more suitable transformation law with 
respect to the projective (vector) regular representation 
we introduce the following bases for L2(G): 

{R~.=;;Z;D~.*: /3EA G (Q)' P,Q=1,2, ••• ,ns}, (2.26) 

(2.27) 

Similar to vector unirreps we obtain for the projective 
unirreps 

(2.28) 
TS 

that L2(G) decomposes under the action of the unitary 
projective representation T into a direct sum of projec­
tive unirreps D BB * = {DBh(x,Y) =DB(x)® OB*(y): (x,Y) 

E G x G} of G x G which belong to the factor system Q. 
Each projective unirrep OBB * occurs in T only once. 
The transformation law 

T(x,y)Rfi = L;D~I(X)Df/(Y)R~1 
kl 

with T (x, y) = V(x)V"(y) , (2.29) 

where V(x), respectively V"(y) denotes the left-, re­
spectively right-regular vector representation of G, 

[T(x, y)1](z) = [V(x)V" (y )1](z) = 1 (x-1zY), (2.30) 

reflects the corresponding situation for the vector unir­
reps of G. The equivalence of the bases (2.26) and (2.27) 
implies that there must exist a unitary transformation 
depending on the factor system Q which connects both 
bases, 

R't; = 6 Uf}~;R:", (2.31) 
SP. 

R~. = L; Ufj ~.Rfi . (2.32) 
ctlj 

However, the determination of the unitary transforma­
tion U is unsolved, except for the trivial case where Q 

is a trivial factor system. Note a further remarkable 
difference between vector and projective unirreps of a 
given group G. Whereas the complex conjugate of a vec­
tor unirrep must be equivalent to one of the given set of 
the vector unirreps, the situation for projective unir­
reps is quite different (except for trivial factor sys­
tems), since the complex conjugate projective unirreps 
belong to the factor system Q* which prevents in any 
case the above mentioned equivalence relation. 

C. Projective group algebra 

The definition of the group algebra A (G) of a finite 
(compact continuous) group G and its properties for or­
dinary vector representations are extenSively dealt 
with in mathematical and physical Iitera­
ture.15.16.6.8.17.19.20 One can imagine that the definition 
of a projective (left-) group algebra A(G) for a given 
standard factor system Q is quite similar to that of or­
dinary vector representations. Thereby we restrict our 

2067 J. Math. Phys .• Vol. 18, No. 10, October 1977 

considerations to the definition of the left-group algebra 
which is in the following. briefly called, group algebra 
A(G). We call the set 

A(G)={F: FE£2(G)} (2.33) 

whose elements are given by 

(2.34) 
xEG 

the (Ieft-) group algebra A(G) belonging to the standard 
factor system Q. A(G) is a Hilbert space being iso­
morphic to P(G) if the scalar product in A(G) is defined 
by 

{F,H}=(F,H) for allF,HEL2(G). (2.35) 

A(G) becomes a symmetric ring if the product FH is de­
fined in the usual way and the involution is the mapping 
F - F i , where Fi is the adjoint operator. We briefly 
call the symmetric HUbert ring A(G) the group algebra. 
However, one must be careful, e.g., the following rela­
tion: 

(2.36) 

shows that the adjoint operator V(x)t [belonging to A(G) 
since G is finite] is not identical with the operator V(x- 1

) 

which represents the inverse group element to x. In 
case we introduce {,,(x): XE G} as an orthogonal (but 
not normalized) basis of A(G) it is obvious that 

Dreg = {oreg(x): XEG}, (2.37) 

0ftg(X i ) = Q(Xi,Xk)Oe.xj1xjXk (2.38) 

defines a (left-) regular projective matrix representa­
tion of G and therefore also of A(G). 

Analogous to ordinary vector representations A(G) is 
a semisimple algebra19 •2o which decomposes into a di­
rect sum of n% -dimensional, symmetric and simple 
algebras AB (G), 

A(G) = L;®Nl (G). (2.39) 
s 

For every n~ -dimensional simple algebra AB (G) there 
exists a basis 

(2.40) 

whose elements are called "units/' They must satisfy 

E Bt EB 
Po = qP, 

E~qE;s = 0B'(\rE~s, 
F = ~ {E~q, F} nBIE~q , 

BPq 

(2.41 ) 

(2.42) 

(2.43) 

(2.44) 

In case one knows the projective unirreps of G for the 
given standard factor system Q the units have to be con­
structed by 

E~q=nsIGI-l~D:q*(X)V(x), (2.45) 

v(X) = ~ D2.(x)E: •. 
SP. 

(2.46) 

On the other hand, if one has constructed elements of 
the algebra A(G) satisfying Eqs. (2.41) and (2.42), Eq. 
(2.44) allows us to calculate the matrix elements of the 

R.Dirl 2067 



                                                                                                                                    

projective unirreps for the given standard factor system 
Q. Relation (2.44) is used in the following sections to 
actually calculate the matrix elements of the projective 
unirreps of C. 

III. INDUCED PROJECTIVE REPRESENTATIONS 

A. Normal subgroup N 

In the following we restrict our considerations to the 
construction of induced projective unirreps of C out of 
projective unirreps of normal subgroups N of C. The 
main reason for this restriction arises from that, in 
that only for normal subgroups a systematic induction 
procedure can be developed, whereas for nonnormal 
subgroups H of e the induction proceeds (apart from 
special cases) much less systematically, as shall be 
discussed shortly by means of an example in Sec. III. H. 
But one may not infer from these remarks that all non­
normal subgroups (with their corresponding projective 
unirreps) are excluded to be chosen as the starting point 
for the described induction procedure, since for any 
subgroup H of C whose chain of normalizers 

N"'(H) = {x: xNm-l(H)x-l=Nm-l(H),XECt, m~l, 

H'= Nf'(H) ~ N1 (H) '= N(H) ~ N2 (H) 

'=N(N(H»~"'~Nk(H)~C, (3.1) 

is ending in C, the developed method can be used to con­
struct step by step the projective unirreps of C, because 
Nm(H) lbeing the normalizer of Nm- 1 (H) in ej contains 
Nm-1(H) as normal subgroup. 

Now we assume that for a normal but not necessarily 
Abelian subgroup N = {e, n, m, ... } of the given group e, 
the projective unirreps for the given standard factor 
system Q are already known. This implies that the ele­
ments of the set 

{D~.: iJ.EAN(O)' p,q=1,2, ... ,n~~ 

must satisfy the following equations: 

~ D~.(n)D~r(rn) = Q(n, m)D~r(nrn), 

INI-l ~ D~.*(n)D:'s(n) =n~lo~vopro.s, 
nL:N 

~ n~D~.*(n)D~Q(m) = lN1 onm. 
~PQ 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Thereby AN(Q) denotes the set of all equivalence classes 
of the projective unirreps of N (for the given factor sys­
tem Q which has to be restricted to the subgroup NXN 
of ex e) and n~ denotes the dimension of the correspond­
ing projective unirrep D~ . 

Because of the fact that e is assumed to be finite, 
A(N) must be a subset of A(C). Likewise for A(C) the 
semisimple algebra A(N) decomposes into a direct or­
thogonal sum of n~ -dimensional Simple algebras A~ (N). 
For every simple algebra A~(N) we take the elements 

E~.=n~lNl-16D~.*(n)v(n), p,q=1,2, ... ,n~ (3.6) 
"~_N 

as a basis which satisfies the relations 

E~/ =E~p, (3.7) 
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V(n )E~Q =: E D~p (n )E~ •. 
r 

B. Little group N { /1 } 

(3.8) 

(3.9) 

Starting from the assumption that N is a normal sub­
group of C we realize that 

V(y) tV(n )V(y) = Q (n, Y)Q * (Y, y-1ny)V(y-1ny) 

for all Y E C and nEN (3.10) 

implies an automorphism for the regular projective 
representation of the normal subgroup N and therefore 
also of the group algebra A(N),t' 

FE A(N)~ V(y)TFV(Y)EA(N) 

for all y E C and FEA(N). (3.11 ) 

Consequently we call the set 

N{iJ.} = {x: V(X)TFf1V(X)EN (N), F~EN (N)} (3.12) 

forming a group, the "little group" which belongs to the 
projective unirrep D~ of N. That the group N{iJ.} is a 
subgroup C containing itself, N, as a normal subgroup 
is readily verified. Furthermore, we have to note that 
every simple algebra V(y)T N'(N)V(Y) (for all YEC) 
must be identical with one of the simple algebras of 
A(N) whose dimension is the same as for A~ (N) since N 
is a normal subgroup of C. Denoting the elements of the 
set C: N{fl} of left-coset representatives (of the left 
cosets of N{fl~ with respect to C) by 

~)Ee :N{iJ.~, (3.13) 

it is obvious that 

(3.14) 

are conjugate subgroups corresponding to inequivalent 
projective unirreps of N (provided Z j '* Z k) which are de­
noted by fl(Zj) according to the notatio~N{iJ.(0)}. This 
construction decomposes AN(Q) into disjoint subsets 

{fl} ={iJ.(~): £jEe :N{iJ.}} , 

iJ.(x)=fl~ xEN{iJ.}. 

(3.15 ) 

(3.16) 

Choosing from each such set one element we obtain the 
so-called fUndamental domain L:>AN(O) 

(3.17) 

which has to be determined if one wants to calculate all 
projective unirreps of e by means of induction out from 
the projective unirreps {Df1

: iJ.E L:>AN(o)} of N. Finally 
we mention that 

A(N) = ~ (3.18) 
~c f::..A.N(Q) 

The subalgebras AI~J (N) appearing in Eq. (3.18) are in­
variant with respect to the automorphism (3.11) for all 
YEC. 

C. Special projective unirrep of N { /1} 

To be more concrete the automorphism of the simple 
algebras N(N) defined by Eq. (3.12) implies for the ele­
ments of the basis (3.6), 
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V(x)tE~.V(X) =n~INI-16 D~*(xnx-l)Q*(n,x-l) 

" 
x Q (x-1,xnx-I)V(n) , (3.19) 

that the projective unirrep 

D~ (xnx-1)Q (n, x-I)Q*(X- 1 ,xnx- l ) -D~ (n) ~x EN{J-L} 

(3.20) 

must be equivalent to itself, supposed XEN{J-L}, other­
wise 

D~ (~n ~-I)Q (n, ~-l)Q *(~-l. ~n ~-l) 

-OIl(L)(n)¢ ~ E G :N{J-L}. 

Thereby it is obvious that the standard factor system Q 
enters essentially into the definition of the little group 
N{J-L}. According to Schurs lemmal

-
3 there must exist 

for every XEN{J-L} (up to a unimodular factor forming a 
trivial factor system) a unitary matrix B)1 (x) which 
satisfies 

O~(xnx-I)Q (n,x-I)Q*(x-r,xnx- l ) = B)1 (X)OIl (n)BII (x)t . 

(3.22) 

It is well known l - 3 that the set 

(3.23) 

forms a projective unirrep of N{J-L} which belongs how­
ever to a standard factor system being in general differ­
ent to the given one, 

8 11 (X)B)1 (x') =P (x, x')BiJ (xx') . 

That BII(X) (for all xEN{J-L}) must be unitary follows 
from the unitarity of 011 (n) (for all n EN). Now it is ob­
vious that the new factor system P must be correlated 
to the given one. If, remembering that the product of 
two factor systems forms a new one, we make the an­
satz 

P(x,x') = Q(x,x')R*(x,x') for all X,X'EN{J-L}, 

where because of (3.22) and the assumption 

BII(n)=DII(n) for all nEN, 

(3.25) 

(3.26) 

the standard factor system R must satisfy the following 
condition: 

R(n,x)=R(x,x-1nx) forallnENandxEN{J-L}. (3.27) 

For the following considerations it is suitable to define 
a set N{J.l}: N of left-coset representatives (of the left 
cosets of N with respect to N{J-L}): 

~EN{J-L}:N~x=~:n forallxEN{J-L}, (3.28) 

N{J-L} ={~N: ::EN{J.l} :N}. (3.29) 

As a consequence of (3.26) we can choose for the factor 
system R, 

R(n,m)=1 for all n,mEN, (3.30) 

if we restrict the domain of definition of R from the di­
rect product group N{J-L}xN{J-L} to NXN. When consider­
ing relation (3.27) it is suggestive that it must be possi­
ble to replace the factor system R by a new one which is 
a constant function on the left cosets (~Nx::'N) of NXN 
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with respect to N{J-L}XN{J-L}. We start from the new fac­
tor system K 

K( x, x') =R(x, x')w(xx')w* (x)w*(x') 

for all X,X'E N{J-L} , (3.31 ) 

where w shall be a suitable defined trivial standard fac­
tor system such that 

K(x,x')=K(::n,(n')=K(::,::') for all X,x'EN{J-L} 

(3.32) 

is satisfied. Equation (3.27) has to be replaced by 

K(n, x) =K(X, x-Inx)w(x-Inx)w*(n) 

for all nEN and xEN{J-L}. (3.33) 

If choosing 

w(x)=R(c(x)x-r,x), (3.34) 

c(x) =c(::n) =c(::.) =:: for all XEN{J-L} , (3.35) 

it can be shown by a straightforward calculation using 
Eqs. (2.2)-(2.4), (3.27), and (3.30) that the factor sys­
tem 

K(Xp x 2) =R(xl • x2)R(c(XIX2)(XIX2fl, XIX2) 

xR *(c(x l ) X~l, Xl )R*(C(X2)X;I, x 2) (3.36 ) 

indeed forms a standard factor system of the desired 
properties (3.32). Therefore, we always assume in the 
following that the projective unirrep BI1 belongs to the 
factor system 

P(XPX2) = Q(Xpx2)K*(XUX2) for all X;EN{J-L} , 

(3.37) 

where the standard factor system K satisfies (3.32). 

The reason why we consider the special case nil = 1 
separately lies in the fact that contrary to the case nil 

> 1, the factor system K can be determined quite gen­
erally. In order to verify this assertion we start from 
the equivalence relation (3.20) which reduces for this 
case to an equality, 

DII (xnx-I)Q (n, x-I)Q * (X-I, xnx- l ) = DII (n) 

for all nEN and xEN{J-L}. (3.38) 

Obviously 

BII(x)=1~P(x,x')=1 for all X,X'EN{J-L} (3.39) 

must be a solution for (3.38). This implies that P is a 
trivial standard factor system. If we take the following 
choice: 

BII(n)=DII(n) for all nEN, 

BII(::)=1 forall::EN{J-L}:N, 

(3.40) 

(3.41 ) 

we can extend these (one-dimensional) matrices by 
means of 

B)1(::.n)=Q*(~,n)D~(n) for all nEN and ::'EN{J-L}:N 

(3.42) 

to a projective unirrep of the type (3.24) whereas the 
condition K(x, n) =1 (for all xEN{J-L} and nEN) is al­
ready taken into account. Since P must be a trivial 
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standard factor system we obtain 

P(x,x') =B~(x)B~(x')B~*(xx') for all X,X'EN{J.-L} 

(3.43) 

which has, because of (3.37), as consequence that K 
must take the following special form: 

K(xu x 2) = Q (X
U

x 2)P*(X
U 

x 2) 

=KC:,u:) = QC:.1'~)Q*(~2' n12)D~(n12)' 
(3.44) 

(3.45 ) 

However, contrary to the case n~ = 1 we must confess 
that for the cases n~ > 1 the difficult task to determine 
quite generally the explicit form of the standard factor 
system K remains unsolved, i.e., one has to calculate 
by means of Eqs. (3.25)-(3.27), (3.34), and (3.35) for 
every group the factor system K separately. 

D. I nduced projective representations of N ( JJ.} 

In order to obtain induced projective representations 
of N{J.-L} which belong to the original standard factor sys­
tem Q we start from (3.19) and use (3.22). Because of 

V(x)tE~.V(x) = 6 B~p(x)tE~sB~s(x) for all XEN{J.-L} 
rs 

(3A6) 

it is suggestive to introduce in the IN{J.-L} :Njn~-dimen­
sional subalgebra A(D~ tN{J.-L}) of A(G) instead of the ob­
vious basis, 

{VC~')E~.: ::EN{J.-L}:N;p,q=1,2, •.. ,n~}, (3.47) 

a new basis by means of the following definition: 

"~ 
{F~.;K.= 6BJ:p(x)tV(x)EJ:.: 

k=l - -

::EN{J.-L}:N, p,q=1,2, ... ,n~}. (3.48) 

This new basis of A(D~tN{J.-L}) has as a consequence that 
A(IYtN{J.-L}) decomposes, with respect to the left regu­
lar projective representation of N {J.-L} in n ~, left ideals 
of the dimension n~IN{J.-L} :NI, where IN{J.-L} :NI denotes 
the order of the set of the left-coset representatives of 
N with respect to N{J.-L}. The last assertion can be seen 
from 

(3.49) 

(3.50) 

(3.51) 

which implies for 

v(~n)F~;!2 =K(::r,:S)6 BJ:p(~n)FJ:;!12 
k 

(3.52) 

that the following induced projective representation of 
N{J.-L} 

"~ 
V(x n)F~ ;!2 = 6 '" D~ tN{~}(X n)F~;!3 (3.53) 

:::J. P. . {} L.J 13k '!2P:::J. k. 
!3,eN ~ :N k=l 

belongs to the given standard factor system Q, 

D~ t N{~} (x)D~ IN{~} (x') = Q (x, x')D~ t N{~} (xx'). (3.54) 
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The matrix elements D~3~~~~) (~n) of the reducible uni­
tary projective representation 

D~tN{~} ={D~tN{~}(::n): nEN, ::EN{J.-L} :N} (3.55) 

can be readily obtained when comparing (3.52) with 
(3.53). 

E. Projective unirreps of N ( JJ.} IN and N (JJ.) 

In order to decompose the reducible projective repre­
sentation (3.55) in its irreducible constituents, one has 
to construct the projective unirreps of the factor group 
N{J.-L}lN for the given factor system K (arising from the 
factor system K), whose domain of definition is re­
stricted to the left-coset representatives and where K 
is given by Eqs. (3.36). These projective unirreps of 
N{J.-L}lN can be extended by means of the inverse canoni­
cal homomorphism (N{J.-L}xN{J.-L}-N{J.-L}lNXN{J.-L}lN) to 
projective unirreps of N{J.-L} belonging to the standard 
factor system K. We denote the set of the matrix ele­
ments of all projective unirreps of N{J.-L}lN by 

(3.56) 

In case we identify the elements of N{J.-L}/N with the cor­
responding left-coset representatives by means of the 
following mapping 

xN-x for all XE N{J.-L}:N - - -

we can write for the multiplication law 

6D~/~1)D~c(~2) =!f(~u~2)D~c(~12)' 
b 

where ~ 12 has to be understood as 

~lN~2N =~12N-~12' 

(3.57) 

(3.58) 

(3.59) 

Now the projective unirreps of N{J.-L}lN belonging to the 
factor system K can be easily extended to projective 
unirreps of N{~} belonging to the factor system K by 
means of 

DK C~n) =DK (~), 

DK (n) = 1 for all IlEN and~EN{J.-L}:N. (3.60) 

This by no means contradicts with the definition of the 
factor system K which satisfies (3.32), since 

DK (~11l1) D" (~21l2) =K(~lnH~21l2) DK (~ln1~2n2) 

=K(~H~2) DK (~12) =D K ~1) DK (~2) 

(3.61) 

is always valid. The knowledge of the projective unir­
reps DK of N{J.-L}lN allows us to construct the corre­
sponding units of A(D~ tN{J.-L}), 

L~/b. =IlK I N{J.-L}lNI-16D:b*(~) F~;'=', J.-LE A NCQ) , 

KEAN{~}/NCIQ' p,q=1,2, ... ,n~, a,b=1,2, ... ,nK • 

(3.62) 

After a straightforward calculation by using Eqs. (3.62), 
(3.61), (3.52), and (3.32) we obtain for 

V(~n) L:;;b. =6D~a(~) B~p(~n) L~':;b. 
Cr 

=6D~;;ap(~n) L~~;bq (3.63) 
cr 
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that the projective unirreps of N{/l} which are induced 
out from the projective unirrep D~ of N have the follow­
ing structure: 

DK
, ~ = {DK, P(x) = DK

, ~(~n) =DK(~) @ B~(~n): x E N{/l}}. 

(3.64) 

Thereby DK is a projective unirrep of N{/l}lN belonging 
to the factor system K and B~ is the special projective 
unirrep of N{/l} which belongs to the factor system P 
=QK*. 

Finally we observe that the subduced projective rep­
resentations 

decomposes into the direct sum of projective unirreps 
of N without any further unitary transformation. 

F. Projective unirreps of G 

As the last and simplest step we carry out the induc­
tion DK,~tG. For this purpose we introduce in A(G) a 
basis whose elements are given by 

..J K. ~) t G - "( ) L K, ~ V( ) tEA A 
li:-1ap'~2bq - "E1 ap,bq E2 , /l '"" NCQ)' 

K E A N{P} IN(!!) , p, q = 1,2, ... ,n" , 
a,b=1,2, ••. ,no EiEG:N{fJ.}. (3.66) 

It can be shown by straightforward calculations that the 
elements (3.66) satisfy the necessary and sufficient con­
ditions 

(3.67) 

P<K.~)tG ..Jr, gltG -0 0 0 0 0 p(K.~)tG 
z aPt;: bqi"'~ cr,z ds- KT 1-'£ be qr z ,z z ap,z4ds' 
-1 -2 -3 -4 -2 -3 -1 -

(3.68) 

(3.70) 

to be units of A(G). The proof of the first equation is 
trivial, of the second one it is less trivial, since one 
has to use among other things the fact that J.L(E) with 
::'i i-e characterizes an unirrep of N which is not equiva­
lent to this one which belongs to /l. The proof of the 
third equation (completeness) is rather complicated. 
Because of (2.44) the matrix elements of the projective 
unirreps of G belonging to the given standard factor 
system Q which are induced out from the projective 
unirreps of N are defined by 

V(y)p(K.~)\G = ~ D(K,~)tG (y)P:K,~)\G (3.71) 
-=l

ap
'.,!2 bIJ 

Z CT ..!3 cr '..!'lap -=3 CT '..!'2 bIJ ' 
-3 

where its dimensionnK~1 is given by Eq. (3.70). (IG:N{fJ.}1 
denotes the order of the set of the left-coset represen­
tatives of N{J.L} with respect to G.) 

D(',Il) t G (y) IiK,~) t G(y') = Q(y, y,) rJK,~) t G(yy'). (3.72) 

The explicit form of the matrix elements of the induced 
projective unirreps of G can be obtained by comparison 
of (3.71) with the following formula: 
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(3.73) 

Thereby we have used that any y E G can be written uni­
quelyas 

(3.74) 

and that the product of any two elements of the set of the 
left-coset representatives (of N{/l} with respect to G) is 
given by 

'::'1'::'2 ='::'12 X 12 with '::'12E G :N{fJ.} and X 12 E N{/l} , 

(3.75) 

respectively 

'::'i-1Xk'::'j ='::'i(J,)Xk(j) for all'::'iE G:N{/l} andxkEN{/l}, 

so that 

(3.76) 

since the groups N{/l} are in general not normal sub­
groups of G. We note that formula (3.73) can be rewrit­
ten in the following form: 

v(y.) p(K. p)\ G 
J -=laP'-=2bq 

(3.77) 

[where'::'a(='::'i,ll(j) is uniquely determined by Yi and'::'l], 
which gives rise by means of the following definitions 
(Kronecker-Delta whose domain of definitions are left 
cosets of N{/l} with respect to G): 

(3.78) 

to a more convenient form for the matrix elements of 
induced projective unirreps of G, 

D~~':: :.%1 aP( y) =~Il(.::. 3, Y'::'l )Q(y ''::' JQ*(=.a,'::'; lY'::'l) 

(3.79) 

Finally we realize that the induction procedure can be 
seen most clearly by the special structure of the units 
(3.66). 

The "inverse" procedure, namely the subduction 

rJK,~)tG+N- ~ (EBnK)D"(~) (3.80) 
~(G:N{~} 

can be easily carried out and shows that the Frobenius' 
theorem also holds for projective representations. 2 

Thereby we find that the reducible projective represen­
tations D(K, p) t G +N decompose without any further unitary 
transformation (up to equivalence) into the direct sum of 
the corresponding projective unirreps of N. The last 
assertion can be readily verified by means of Eqs. (3.73) 
and (3.21) if Yj is an element of N, 
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(3.81) 

or can be directly seen from Eq. (3.79) together with 
(3.78) and (3.64), 

DiK/j,llap(n) =0~3'~1 Oca Q(n'~l)Q*(~l>~;ln~l) 

XD~p(~;ln~l) . 

G. Special case G = P ® N 

(3.82) 

In this part we discuss shortly the induction procedure 
for the special case where G is a semidirect product 
group. Thereby we use a more appropriate notation for 
the group elements of the semidirect product group 

G =P@N={zn: ZE P, liEN}, 

z-lnz E N for all z E P and /lEN, 

ZZ'E P for allz,z'E P, 

(3.83) 

(3.84) 

(3.85) 

which indicates clearly that N is a normal subgroup of 
G. From the beginning we assume that we have given a 
standard factor system Q for G, which can be trans­
ferred in a more convenient form which takes into ac­
count that G is a semidirect product group (see Ref. 2, 
Theorem 9.4). 

As in Sec. lILA we assume that all projective unirreps 
of N are given. The structure of the little groups must 
now be of the form 

(3.86) 

where P{fl} is a subgroup of P. Its elements are de­
fined by 

ZE P{fl}~DM(znz-l)Q(n,z-l) Q*(z-r,znz-I)-OM(n). 

(3.87) 

We note that the n~-dimensional projective unirrep 13 M of 
N{/l} belongs to a standard factor system of the type 
(3.37). For the special case nil = 1 the standard factor 
system K reduces to Q where the domain of definition 
has to be restricted to P{fl}xP{fl}. According to the 
general case we have to construct the projective unir­
reps of P{fl} belonging to the standard factor system K 
in order to obtain the projective unirreps of N{fl} which 
belong to the original factor system Q. Summarizing 
the results we obtain for the projective unirreps of N{fl}, 

DK.M={IY'·~(zn) =DK(z)@B~(zn): z E P{fl}, nEN} 

(3.88) 

where DK belongs to K and B~ to QK*. The last step, the 
induction OK. ~ t G has to be carried out completely in the 
same way as in Sec, III.F. 

H. Induction for nonnormal subgroups H of G 

Analogously to Sec. IILA we assume that the matrix 
elements of a complete set of projective unirreps of a 
nonnormal subgroup H = {e,h, •.. } of G are already 
known. This implies that the elements of the set 
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(3.89) 

must satisfy equations which are completely equivalent 
to Eqs. (3.3)-(3.5). Thereby AH(O) denotes the set of all 
equivalence classes of the projective unirreps D~ of H , 
which belong to the factor system Q. 

Since G is finite, A(H) must be a subset of A(G) and 
decomposes into a direct orthogonal sum of n~-dimen­
sional simple algebras .¥ (H). For every simple alge­
bra we take the elements 

E~q =n~ I HI-10D~:(h )V(h), p, q = 1, 2,0" ,nM 
h 

(3.90) 

as basis, 

Choosing a set G:H of left coset representatives z (of 
H with respect to G) it is obvious that the set -

{K~~~=V(~)E~q: ~EG:H, flEAH(o)' p,q=I,2, ... ,n/l} 

(3.91) 

forms a basis of A(G) which engenders a projective ma­
trix representation of G belonging to the factor system 
Q. This projective matrix representation is equivalent 
to the left regular projective matrix representation 
(2.37), (2.38). Since the sets 

(3.92) 

form bases of left ideals of A(G), the regular projective 
representation decomposes into the direct sum of in 
general reducible projective representations of G, 

V(V)K/l·.!El=~DMIG (y)K~'~z 
- pq (-1 .!!.2r'.!!.lP yq 

~2r 

=V(~3) V(~3)t\'(y) V(~l) K~~E 

= Q(y,~JQ*(~3'~ ;lyz 1) V(~ 3) 

X~D~p(~;IY~I)K~d£ . (3.93) 

Introducing the definition 

t,(y y)=O =0 
11 2 YIH'~2H .!lH?~ZH' 

(3.94) 

where Yi =~ihi with~iE G:H andh;EH must be taken 
into account, we obtain immediately the matrix ele­
ments 

D~ IrG, z p(Y) =t, (~2' y~l )Q( Y '~1 )Q*(~2'~; 1 y~l )D~p(~; 1 J~l) 
-2 -1 

(3.95) 

of the projective representations If I G (fl E A H(O)) of G 
which belong to the standard factor system Q. 

In order to be able to decide whether for a fixed }J. 

DM I G forms a projective unirrep of G or, what is com­
pletely equivalent to the question, whether the elements 

V(~)E~qV(~k)t: j,k=I,2, ... ,IGIiHI-I (3.96) 

are units of A(G), we investigate the corresponding 
character relations. According to the general orthogon­
ality relations of characters (which also hold for pro­
jective representations) we know that DM I G is irreduc­
ible if and only if 

(3.97) 
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is satisfied where 

X~(h) =6D~p(h), 
p 

(3.98) 

(3.99) 

denotes the character of the projective representation 
D~ t G of C, respectively of the projective unirrep D~ of 
H. A simple calculation yields 

61 x~tG(YW=lcl+ 6 6 Q(Y'~1)Q*(~1,~~1Y~1) 
z x Z Y,,"=H 
-1 -2 ~1'.!2 

X Q*(Y'~2)Q(~2,~;1Y~2) 

X x~~ ~1 y~ 1) l*(~;1 Y~2) . (3.100) 

Thereby the group Hz z is defined as the intersection 
of the two conjugate s~bhoups z 1Hz -;.1 and z 2Hz ; 1. Now 
D~ t G is irreducible if and only if the second term of Eq. 
(3.100) vanishes. This is the generalization of John­
ston's irreducibility criterion6 to projective represen­
tations. 

Inspecting the second term of Eq. (3.100) for the sim­
ple example where 

Hz z ={e} for allziE C:H 
-1'-2 -

(3.101) 

we find immediately 

61 x~tGCvW=lcl +(ICIIHI-1-1)lcIIHI-1n~ (3.102) 

which implies that every projective representation D" t G, 
MEA H(Q) is reducible. Now there remains the difficult 
task to determine such linear combinations of the ele­
ments (3.92) which engenders projective unirreps of C. 
However this task can only be carried out much less 
systematically than for normal subgroups, since neither 
the concept of little groups nor the concept of factor 
groups can be applied. 

IV. NONSYMMORPHIC SPACE GROUPS 

A. Unirreps of nonsymmorphic space groups 

In this section we apply the described induction pro­
cedure in order to determine the vector unirreps of a 
nonsymmorphic space groupo Thereby we shall show 
that the determination of the allowed vector unirreps of 
the little groups cq [of the q-vectors belonging to the 
fundamental domain (Ll.BZ) of the first Brillouin zone 
(BZ)] is the main problem which arises when construct­
ing the vector unirreps of a nonsymmorphic space group 
C. It is well known that for nonsymmorphic space 
groups there exist several methods to calculate the al­
lowed vector unirreps of Cq. One method consists in 
the determination of all projective unirreps of the factor 
group Cq IT, where T denotes the translation group and 
where the form of the factor systems are due to the fact 
that C is not a semidirect product groupo The factor 
groups are isomorphic to one of the subgroups of the 
point group P (""CiT) of the crystal. 

A space group C consists of all elements whose cor­
responding symmetry operations leave the crystal lat­
tice invariant, 
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c={(O'IT(ad+I): O'EP,tET}, 

(0'1 :;(0') +t)({31 :;({3) +t/) 

=(0'{31 :;(0'f3} +t (0', {3) + D(O') I' +I), 

t(O',{3) =:;(0') +n(O')T({3) -:;(0'{3). 

(4.1) 

(4.2) 

(4.3) 

The symbol :;(0') denotes nonprimitive lattice transla­
tions which are uniquely determined when the multipli­
cation law of the nonsymmorphic space group is estab­
lished. The vectors t(O',{3) defined by Eq. (4.3) are 
(like I or t/) elements of the translation group and their 
appearance is typical for nonsymmorphic space groups. 
Furthermore n = {n(O'): 0' E p} is a n-dimensional (n 
= dimension of the crystal lattice) orthogonal represen­
tation of the point group P of the crystal. 

First of all, we note that the standard factor system 
Q of C is equal to one, since we are interested in vector 
unirreps of C. According to the general induction pro­
cedure we start from the one-dimensional vector unir­
reps of the normal subgroup T of c, 

nq={nq(t) =e-iq .i : IE T}, qEBZ. (4.4) 

For the next step [see Eqs. (3.20) and (3.38)] we hav~ to 
determine for any q the corresponding little group C q 

which consists of all space group elements leaving q in­
variant modulo a reciprocal lattice vector Q, 

cq={(O'I :;(0') +t): n(O')q =q +Q{q(O')},(O'I :;(0') +t)E C}. 

(4.5) 

Thereby we have to note that the reciprocal lattice vec­
tors Q{q(O')} are uniquely determined. Denoting the ele­
ments of C: cq by 

(4.6) 

we are now in the position to determine the fundamental 
domain Ll.BZ of the Brillouin zone [see Eq. (3.15)]. 

According to Eqs. (3.40) and (3.41) we choose 

Bq«elt»=nq(t) for allIET, (4.7) 

(4.8) 

where (0' 1 :; (0'» are the left coset representatives of T 
with respect to cq. As a consequence of Eq. (3.44) we 
obtain for 

Kq«O'I :;(0') +t) ,({31 :;({3) +h) 

=Kq«O'I :;(0') ,({31 :;({3)) =nq(t(O',{3) 

for all (I'I :;(1') +t)E cq , (4.9) 
+ 

where the standard factor system Kq must be supplied 
by the indices q. This implies that projective repre­
sentations of cqlT enter in a natural way into the con­
struction of vector unirreps of Co'. 

Therefore, in order to obtain the vector unirreps of 
Cq we have to calculate the projective unirreps of the 
factor group C°'/T belonging to the factor system Kq, 
whose domain of definition is restricted to the left coset 
representatives. Because of the canonical homomorph­
ism we are able to simplify the notation by identifying 
the elements of the factor groups cqlT with those of the 
groups 
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(4.10) 

which are hereafter called "little cogroups." Further­
more we write instead of 

{f"Q (ad :;(0'» ,(;31:; (13») =R Q (0',;3) = e- iQ' '(a.8). (4.11) 

Assuming that all p~ojective unirreps of pq belonging to 
the factor system R q are already determined, 

( 4.12) 

we can extend by means of the inverse canonical homo: 
morphism these projective unirreps to such ones of C q 

belonging to KQ [compare with Eqs. (3.60) and (3.61)], 

(4.13) 

Because of Eq. (3.64) we obtain as vector unirreps of CQ 

DK
• Q = {D K

• Q (0' 1 "7 (0') + 1» 

=DK (0')0DQ(t): (0'1 "7(0') +1)ECQ}. (4.14) 

As last and simplest step we obtain immediately by 
means of Eq. (3.79) the matrix elements of the vector 
unirreps of the nonsymmorphic space group, 

ntK
• q)\G (;31 :;(f3) +1» 

~3C. Q.l a 

=6, Q(~31 T(~ 3» ,(f31 "7(;3) + 1)(~11 T(~l ») 

X D~d q (~31 "7(~3n-l(;31 7'(f3) +1) (~ll "7(~1») , 

6, Q(O'I :;(0') +t) ,(yl "7(y) +1/» 

(4.15) 

(4.16) 

Because of Eqs. (4.2), (4.11), and (4.14) we obtain for 

D K
• q(~31 "7(~3 »-I(f31 "7(;3) + t )(~11 "7(~1 ») 

=Rq (.Q3) (;3,~ 1) Rq (.Q3) *(~3'~; 1;3~ J e- iD (~3)Q" D~a(~; 1 ;3~1) . 

(4.17) 

Togeth~r with the obvious simplifications for the func­
tions 6, q 

6,Q(ad "7(0') +t) ,(yl "7(Y) +"h)=6,q(O',y) =Oapq.ypQ, (4.18) 

we arrive at the result 

ntK
• Q)\ G (;31 T(;3) + 1» 

£3 c '£'l a 

= ~ q (~3' ;3~1) R q (.Q3) (I3'~I) R q (.Q3) *(~3,~;1 ;3~1) 

xe-iD(~3)Q"D~a(~;I;3~I)' (4.19) 

This result shows, as already pointed out, that the main 
task lies in the determination of the projective unirreps 
of pq which belong to the standard factor system R Q. 
Thereby it should be noted that for this method the prob­
lem of determining allowed representations does not ap­
pear, in contrast to other methods where the allowed 
vector unirreps of larger groups have to be determined. 

The determination of the projective unirreps of pq be­
longing to the factor system R q can be simplified, this 
is yet to be seen in the following sections when changing 
each factor system by a trivial one. In particular, it is 
convenient to change for each q E 6,BZ the factor system 
by means of the following definitions: 

(4.20) 
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W(O') RK (13) = SQ (0',;3) W (0';3) , 

SQ(O',;3) =e- iQ'(D(a)-I)T(B) for all O',;3EPQ, 

(4.21) 

(4.22) 

which. impliEiS that all projective unirreps R" = {R K (0'1: 
0' E pq} of pq belong to the standard factor system sq. 
This new factor system sq can be readily transferred in 
the complete equivalent form 

sQ (0',;3) = eiO {Q(a)} '[T(a8) -T(a) 1 

by means of 

(4.23) 

Q{q(O'f3)} =Q{q(O')} + D(O') Q{ci(f3)} for all 0', f3 E pq 

(4.24) 

and Q. 1=2rrn, n = integer. Hence the matrix elements 
(4.19) take the form 

D~' ~~ ~ G a (f31 "7(;3) +t» 
-3 -1 

=6, q (~3' j3~ l)R Q(Q3)(;3'~1) R Q (Q3)*(~3'~; 1 ;3~1) 

X e- iq'T( ~31 B~l) e- iD( ~3)Q' 'R K (a- 1 f3a ) 
Ca _3 _1 . (4.25) 

Finally we mention that the construction of the corre­
sponding units can be carried out immediately. These 
units are useful if C -adapted functions have to be con­
structed. C -adapted functions are ones which transform 
according to vector unirreps of C and are needed for the 
calculation of energy bands. We obtain by means of Eqs. 
(4.25), (4.14), (3.66), (3.62), and (3.6) the operators 

E(K. qll G 
£l Q ,2. 2

b 

(4.26) 

representing the units in the Hilbert space in question. 
Thereby EQ denotes the units of T and u(i31 "7(13») unitary 
operators (representing space group elements) which 
must satisfy the multiplication law (4.2). 

B. Compatibility relations for factor systems 

Before starting to discuss several possibilities of how 
the projective unirreps for any pq belonging to the stan­
dard factor system sq can be calcu~ated, we investigate 
in more detail the factor systems sq. According to Eq. 
(4.23) we obtain 

(4.27) 

supposing that q does not lie on the "surface" of 6,BZ. 
This implies that for all q's not lying on the surface of 
~BZ the projective unirreps reduce to ordinary vector 
representations5

•
21 and only for q's lying on the surface 

do projective unirreps occur. If qo is a point of the sur­
face of 6,BZ it is obvious that the following subgroup re­
lation always holds: 

+ + 

pqo ~pq, q =Eqo, E E (0,1). 

Hence we arrive at the result 

sqo (0', f3) =SQ (0', ;3) = 1 

for all 0',;3 E pq = pQo n PQ • 

(4.28) 

(4.29) 

Otherwise if qo, q are two pOints of the surface of ~BZ 
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at which 

po.o:lPo. 

is satisfied we obtain for 

SQo(a, mSQ*(a, m =exp[i(Q{<io(a)} -Q{q(a)}) 

. (f(am - f(a») 

(4.30) 

=1 ifa,{3EiQ =PQo npq, (4.31) 

since the corresponding reciprocal lattice vectors do not 
depend on the vectors qo(a) =D(a)qo, respectively q(a) 
=D(a)q, presupposing that (4.30) is satisfied. Conse­
quently 

SQo(a,'m=sq(a,f3) for all a,{3EpQ =pQO(1PQ. 

(4.32) 

Equation (4.32) contains Eq. (4.29) as a special case if 
q =Eqo [EE(O, 1») is admitted and is hereafter called 
"compatibility relations for the standard factor sys­
tems." This relation explains why for any element of a 
line or plane of symmetry of ABZ the same projective 
unirreps of the corresponding little cogroups occur. 

Finally we observe that the formulas (4.28) and (4.29), 
respectively (4.30) and (4.32), offer two possibilities to 
calculate in a systeIllatic way the projective unirreps of 
the little cogroups pqoo The first possibility consists 
in USing as a starting point, the vector unirreps of 
p<qo [E ~ (0,1») [according to Eqs. (4.28) and (4.29)] for 
the induction proc~dure, presuppo~ing that the chain of 
normalizers of p<qo is ending in P qoo Obviously the 
secopd possibility to determining the projective unirreps 
of pqo consists in starting laccording)o Eqs. (4,30) and 
(4.32)] from projective unirreps of pq. As in the first 
case the induction procedure caQ be applied if :yId only 
if the chain of normalizers of pq is ending in pqo. In 
both cases the compatibility relations for the factor sys­
tems guarantees that the induction procedure is appli­
cable. 

C. Induced projective unirreps of the little cogroups 

In this section we discuss in more detail how the pro­
jective unirreps of the little cogroups can be calculated 
by means of the two methods. Thereby we restrict our 
considerations to q's lying on the surface of A BZ. 

In the first case we start [according to Eqs. (4.28) and 
(4.29)] 'Yith the definition of a subgroup of the given 
group pq which takes Eq. (4.28) into account, 

Mq={a:q(a)=q, ac=:pq}. (4.33) 

Groups of this kind are hereafter called "trivial lit..tle 
cogroups." Since q ILes on the surface of ABZ, Mq is a 
proper subgroup of pq, however in general not a normal 
one, 

(4.34) 

According to the preceding section the first method is_ 
applicable if and only if the c~in of normalizers of Mq 
is ending in the given group pq. Presupposing that this 
condition is satisfied, we construct the normalizer of 

M q in pq. The normalizer of M q in p"'q is defined by 

2075 J. Math. Phys., Vol. 18, No. 10, October 1977 

N(MQ)=NQ = {o :Q{q(oao-I)}=O, a c=:MQ, 0 EPq} 

(4.35) 

containing M q as a normal subgroup [Q{q(o)} * 0*0 
iNq] and is hereafter ~alled the "trivial extended liStle 
cogroup." :!'!ow if N(1'v!q) is_a normal subgroup of pq, 
1. e., N(N(M q» = N 2 (M q) = pq, the induction pr9,..cedur.e 
has to be applied once again, otherwise [N2(M q) c pq] 

the chain of normalizers has to be completed and the in­
duction procedure applied repeatedly. 

For the second case we choose for a given pqo a little 
cogroup PQ [where q is a point of the surface of A BZ 
with lower symmetry than <1.0 and (4.30) is satisfied), 
such that for the group 

MQo={a:q(a)=<1.+Q{q(a)}, aEpq}=pq (4.36) -the chain of normalizers is ending in pqo, 

Nk(MqO)=pqo, k""l. (4.37) 

The further steps are completely the same as for the 
first case. In particular, the second way is of interest 
if the first way cannot be chosen. 

Finally it should be no!ed that the so constructed pro­
jective unirreps RK of pq are especially suited for the 
subduction 

W ~ Mq -:B (EBmK.K,)W' , (4.38) 
K' 

(4.39) 

which must be carried out when investigating the "com­
patibility relations", 22,14.23 since the reducible represen­
tations (4.38) decompose lnto the direct sum of the cor­
responding unirreps of pq' without any further unitary 
transformations. This implies that the compatibility re­
lations which are usually written in a somewhat differ­
ent form l4 can be replaced by the Simple formula (4.38). 

V. EXAMPLE: PROJECTIVE UNIRREPS OF THE 
LITTLE COGROUPS OF Pn3n 

In this section we determine quite generally for every 
little cogroup pq, where q lies on the surface of II BZ, 
the projective unirreps RK. For this purpose we specify 
the nonprimitive lattice translations T(a) which belong 
to the elements of the point group Oh of a crystal, whose 
space group is Pn3n. In the following we choose the lat­
tice constant as one which can be done without any loss 
of generality: 

T(n) = 0 for all n EO, 

T(In) = T(nI) = (L ~ J) for all nO. 

(5.1) 

(5.2) 

Thereby the point-group element I denotes the inver­
siono In this connection we mention that we hereafter 
use the notation used in Ref. 6 for the elements of the 
point group 0h' respectively, elements of llBZ. 

First of all we have to determine the standard factor 
system sCi.. According to Eq. (4.22) we must calculate 
for every q -sq(a,f3}= exp[-iq. (D(a) -1)T(/3)] for all a,{3 c.:..pq, 

(5.3) 
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where D (a) denotes 3 x 3 orthogonal matrices, which 
can be readily obtained from Table 1.4 of Ref. 6. Be­
cause of (4.32) the factor systems (5.3) do not change 
for every q which belongs to a line or plane of symme­
try. Therefore, it suffices to determine only one point 
of a line or plane of symmetry for the factor system. 
Straightforward calculations yield the following tables 
(which are written in condensed form and in which, for 
the sake of simplicity, the corresponding indices q are 
omitted): 

Point R [q = 1T(1, 1, 1)] 

pR=Oh",{E,I}XO 

S(n, n') '" 1 =S(In, n') for all n, n' EO, 

S(I, In) '" -1 , 

S(Czw,In) == 1", -S(IC 2w , In), w", x, y, z , 

S(C:k,In)==1"'-S(IC~,In), k==1,2,3,4, 

S(C~w, In):= -1'" -S(IC!w, In), W = x,}" z , 

S (C z .,In) = -1 = -S(IC 2., In), u = a, b, c, d, e ,f. 

PointX [q=1T(O,l,O)] 

pX =D4h = {E, I}XC 4v , 

S(n,n')=l=S(n,ln') for alln,n'c C'V, 

S(In, I) = -1, 

S(In, C:y) = 1 = -5 (In, IC~), 

S(In, C z) = 1 = -S(In, IC 2), 

5 (In,aw) = -1= -5 (In, law) , 

5 (In,adu) = -1 = -S(In, laa.) , 

PoinlM [q=1T(l,l,O)] 

W '" x,z, 

u=c,e. 

pM = D 4h = {E , a x} ® (lE , I} x C 2V)' 

(5.4) 

(5.5) 

S(n, n') = 1 =S(n,axn t ) for all n, n'" {E, I}X C 2v = C 4V , 

S(a xn, C 2m) = 1 = -S(axn,a xL- 2m), m = a, b, X, y, z, (5.6) 

5 (a xn, ad.) = 1 = -S(a xn,a ,ad.)' U = a, b . 

LineT lCi=1T(l,l,z):z:=(O,l)] 

pT = C 4V = {E ,ax} ® ({E, Czz}X{E ,aab}) 

S(n, nt) = 1 = S(n,a xn') 

for all n, nt c {E, Cz.} x{E ,adb} , 

S(axn,a x) = -1, 

S(a xn, C zz) '" 1 = -5 (a xn,a XC2Z) , 

S(axn,adu) = -1 = -S(aXn,aXadu)' u=a,b. 

LineS [Ci=1T(x,l,x):xc(O,l)] 

pS = {E, ay} x{E ,ade} 

S(n, n') = 1 = S(n, aynt) for all n, nt C {E ,aae} , 

S(ayn,a) = -1, 

S(ayn,aae) = -1 = -S(ayn,ayaae) . 
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(5.7) 

(5.8) 

Line Z lq=1T(X, 1,0): x.:: (0, 1)J 

pZ := {E ,a,} x{E ,az } 

S(n, n'):= 1 =S(n,ayn') for all n, nt C {E ,az}, 

S(ayn,ay) = -1 , 

S(ayn,az ) = -1 = -S(ayn,ayaz)' 

PlaneRMX [Ci=JT(x,1,z):x,zc:(0,1), x>z] 

pplan e = {E , ay } 

5 (ay , ay) = -1 . 

Now we are in the position to define by means of 
.. - ... -

V q(a)V q(/3) =Sq(a, {:!)VQ(a{j) 

for all a, fJ ,- pQ 

(5.9) 

(5.10) 

(5.11) 

the left-regular projectiv~e representation of the corres­
ponding little cogroups pQ. and to carry out for every Ci 
the induction procedure. For any case we proceed in the 
following maqner: At first we convince ourselves that 
for a given pqo the chain of ll.0rmalizers of ~n appropri­
ated chosen starting group pq is ending in pqo. Then we 
determine by _means of Eqs. (3.20), (3.21), and (3.15) for the 
unirreps of pq the little groups N{J.l} and the funda­
menJal domain t;.A pq(sq) with respect to the normalizer 
N(pq). For the following step we determine by means of 
Eq. (3.22) the special projective unirrep B~ of N{J.l} be­
longing to the factor system (3.37), which fixes the fac­
tor system (3.44) for the factor group N{J.l}/N. Thereby 
it suffices to investigate (3.22) for an appropriated 
chosen set of generators of PCi, respectively N(PQ), in 
order to be able to determine N {J.l} and t;.Apq(sq). In 
order to obtain the units (3.62) of A(D~ t N{J.l}) we have 
to calculate the projective unirreps DK of N{J..L}/N which 
belong to the factor system (3.44). Thus formula (3.64) 
gives the projective unirreps of N{J.l} belonging to the 
original factor system sqo (whose domain of definition 
has to be restricted to N{J..L}fN{J..L}). By means of (3.66) 
we obtain the units of A(N(Pq» and the~efrom the pro­
jective unirreps of the normalizer N(pq). Obviously it 
is sufficient to calculate_the projective unirreps for the 
set of generators of N(Pq) in order to obtain by means 
of (5.11) the tpatrix representations of the other ele­
ments of N(Pq). For any further step of induction which 
is necessary according to the chain of normalizers we 
proceed completely in the same way. 

- -PointR: pq:=O-pqo=Oh 

According to Fig. 4.1 of Ref. 6 we cannot proceed the 
first way [Eq~ (4.28) and (4.29)], sin£e the chain of nor­
malizers of pq = C 3V does not end in pqo= 0h' Hence we 
must look for a subgroup of 0h whose projective unir­
reps can be easily found and whose chain of normalizers 
is ending in 0h' Because of the special structure of Oh 
= {E, I}X 0 and S(n, nt) = 1 for all n,n' ,- 0 it is obvious to 
use the vector unirreps of 0 as starting point for the in­
duction procedure. The vector unirreps of 0 for the set 
{C 2 x> C2 Z> C;l' C2d } of generating elements of 0 are given 
by 

D~: J.l = 0,1 

(5.12) 
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D~: I-L =2 

C
2X -I ~ : I, C

2Z -I ~ :\, 
(5.13) 

C;l-\~ :2\' w=e-
i2rr

/", C2d-\: ~I; 
D~: I-L =3, 4 

-1 0 0 1 0 0 

o 1 0, C 2Z - 0 -1 0 

o 0 -1 o 0 -1 
(5.14) 

001 001 

010 100 

According to Eq. (3.22) we have to investigate whether 
there exists a projective unirrep B~ (I) satisfying 

D~ (n)S(n, 1) = B~ (1)D~ (n)B~ (1)t, I-L = 0,1,2,3,4, (5.15) 

where InI=n (n c 0) and (5.4) are already taken into ac­
count. Thereby it suffices to investigate (5.15) for the 
generating elements of O. Simple calculations yield 

N{I-L}=O for 1-L=0,land3,4, N{I-L=2}=Oh, (5.16) 

Ll.Ao={I-L: 1-L=0,2,4}, (5.17) 

B~=2(1)= Ii 0.1 with P(I, 1) =S(I,1) = -1 <?K(I, 1) = 1, 
o -z 

(5.18) 

which implies that for I-L = 2 vector unirreps of ohio 
"'" {E, I} have to be constructed, since K(I, 1) = 1. Denot­
ing these vector unirreps by 

If (1) = (-W, K = 0, 1 (5.19) 

we obtain immediately by means of (3064) two inequiva­
lent two-dimensional projective unirreps of 0h, namely 

D(K.~= 2)t0,: K = 0, 1 

C2x-l~ :1, C2Z-I~ :1, 
(5.20) 

C;l_IW 0\, C2d -\0 1\, I_(_ly\i 0\. 
o w2 1 0 0 -z 

For the cases I-L = 0, 4 we use the units [compare Eq. 
(3.66)] 

(5.21) 

to determine [by means of Eq. (3.71)] for the generating 
elements the matrix representations. Thereby E~. de­
note the units of A(O). The superfluous indices K (= 0), 
respectively, q of the elements of the left-regular pro­
jective representation of Oh are omitted in Eq. (5.21). 
We obtain immediately for 

D(~=O)tOh: 

(5.22) 

C2d -1
1 

0 1 ' o -1 \
0 -11 J- . , 
1 0 

-1 0 0 0 0 O' 

o 1 000 0 

1 0 0 0 0 0 

o -1 0 0 0 0 

o 0 1 000 

1 0 0 000 

o 0 -1 0 0 0 o 0 -1 0 0 o o 1 000 0 

o 0 0 -1 0 0 o 0 0 1 0 0 o 0 0 001 

000 1 0 0 

o 0 0 0 1 0 

o 0 0 0 1 0 o 0 0 0 -1 0 

o 0 0 0 0 -1 o 0 0 0 0 -1 

C 2d -

o 0 1 000 

o -1 0 0 0 0 

100 000 

o 0 0 0 0 -1 

o 000 1 0 

o 0 0 -1 0 0 

o 0 0 -1 0 0 

o 0 0 0 -1 0 

o 0 0 0 0 -1 

1- 1 0 0 0 0 0 

o 1 0 0 0 0 

o 0 1 0 0 0 

which form together with (5.20) the desired projective 
unirreps of 0h' The matrix representations for the re­
maining group elements can be easily calculated by 
means of 

(5.24) 
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(5.23) 

Point X: pq=p£:.=C _pqo=px={E J}XC 
4V '4v 

In this case we choose the first way which is de­
scribed by the formulas (4.28) and (4.29). The vector 
unirreps of C 4V for a set of generating elements are 
given by 
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D~: /1 = 0, 1 

C::"-I, ax-(-I)~; 

D~: /1=2,3 

C::..- -1, ax - (-W ; 
D~: /1 = 5 

C::..-I: :31, w=e-j~/2, ax-I: :1· 

(5.25) 

(5.26) 

(5.27) 

According to Eq. (3.22) we have to examine whether 
there exists a projective unirrep B~ (I) satisfying 

(5.28) 

where InI=n (n E:C4V) and (5.5) are already taken into ac­
count. Simple calculations yield 

N {/1} = C 4V for /1 = 0,1 and 2,3, 

AAc = {O, 2, 5}, 4V 

N{/1 = 5}=px , 

(5.29) 

(5.30) 

B~=5(1)=/i °.1 with 

° -t 
P(1, I) =5(1, I) = -1-K(I, I) = 1, 

(5.31) 

which implies that for /1 = 5 vector unirreps of pX Ic 4v 

'" {E, I} must be calculated. These vector unirreps 

DK(I)=(-lt, K=O,1 (5.32) 

yield, according to Eq. (3.64), two inequivalent two-di­
mensional projective unirreps of pX, namely 

D(K.W5)tP X: K=O, 1 

C::.._\w 0\, ax_\O 1\, I_(_Wl
i 

0.\. (5.33) 
° w

3 
1 ° ° -t 

For the cases /1 = 0,2 we must apply formula (3.66), 

(5.34) 

in order to be able to determine for the generating ele­
ments the matrix representations. The superfluous in­
dicesp,q oftheunitsE~c:\(C4v), respectivelYK (=0), 
are omitted again. We obtain two further two-dimen­
sional projective unirreps of pX , 

D(~=O)tpX : 

c::..-/: :1, ax-I: ~J, I-I: ~11' (5.35) 

+ 1-1 
C

4Y
- ° 01 1

1
°\ 10 -11 ' (Jx- , /- , 

-1 ° -1 1 ° 
(5.36) 

which forms together with (5.33) the desired projective 
unirreps of pX. 

Point M: PQ =pr. =C2V _N(Pr.) = {E, I}XC 2V 

= C4h - N2(pr.) =pM =D4h • 

In this case we choose again the first way [Eqs. (4.28) 
and (4.29)]. Because of (5.6) we start immediately from 
the vector unirreps of the normalizer N(Pr.) = C4h • The 
vector unirreps (written in a closed form) are given by 
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D~: /1=(k,l,m), k,l,m=O,l 

C 2a - (-1)\ az - (_1)1, 1- (_l)m. (5.37) 

According to Eq. (3.22) we examine whether there exists 
a projective unirrep W (ax) satisfying 

D~ (a xna x)5(a x ,a xna x) = B~ (a x)D~ (n) B~ (ax) t 

for all n c C 4h . (5.38) 

Thereby we have to take axC2aax=C2b=Ia,C2a, axazax 
= az, aJax =1, and (5.6) into account. We obtain for 

N{!.t} = C 4h for /1 = (0, 0, 0), (0, 1, 1) and 

(1,0,0), (1, 1, 1) and 

(0,1,0), (1,0,1) and 

(0,0,1), (1, 1,0) , 

L>.Ac = {(O, 0, 0), (1,0,0), (0, 1,0), (0,0, I)}. 4h 

Therefore, we must apply (3.66) for all /1 = (k, l, m) 
CL>.A

C4h
, 

p(~) tpM = E~ p(~) IpM = V(a )E~ 
E ,E ,ox.E %, 

(5.39) 

(5.40) 

(5.41) 

which gives rise to the following projective unirreps of 
pM: 

I)<k,l.m)lpM. (k 1 m)cL>.A 
• " C 4h 

\

(_1)1 \ 
a z - , ° (_1)1+1 

I_j(-1)m ° j \0 -1\ ° (_l)m+I' a
x

- 1 ° . 
Line T: i q = {E ,aab}- N(PQ) = {E, C u } x{E ,aab} 

- N2(PQ) =p T = {E ,ax} ®N(PQ) 

(5.42) 

Like in the previous case we choose the first way 
[(4.28), (4.29)] and start again from the vector unirreps 
of the normalizer N(Pq). These vector unirreps are 
given by 

D~: /1 = 0,1 

allb- (-1)~, Cu -1, 

D~: /1 = 2, 3 

aab- (-1)~, C2Z - -1. 

(5.43) 

(5.44) 

According to (3.22) we examine again whether there 
exists a projective unirrep If (ax) satisfying 

D~ (a xnax)5(a "a xnax) = B~ (a x)D~ (n) B~ (a x)t 

for all n cN(Pq), (5.45) 

at which axaabax = aaa, aX C2Z a X = C2Zl and (5.7) have to be 
taken into account. We obtain as results 

N{/1}=N(PQ) for /1=0,1, N{/1}=p T for /1=2,3, 

(5.46) 

L>.AN(PQ) = {O, 2,3}, (5.47) 

B~ (a x) = 1 for /1 = 2,3 

with P(a"ax) = 1~K(aXla.) = -1, (5.48) 
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which implies that for fJ. '" 2, 3, projective unirreps of 
pT /N(Pq) 0>' {E ,a.} have tD be determined. DenDting these 
projective unirreps by 

(5.49) 

we obtain by means of Eq. (3.64) four inequivalent one­
dimensional projective unirreps of pT, namely 

D(K,J1)t
p

T: fJ.=2,3, K=O, 1 

adb- (_1»)1, C2Z - -1, a.- i(_l)K. (5.50) 

For the case fJ. = 0 we use the units [see Eq. (3.66)] 

p(O)/pT = EO p(O)tPT = \'(a )EO (5.51) 
E,E ,o);,E % 

to determine the corresponding two-dimensional projec­
tive unirrep of pT [EO E A(N(Pq»] , 

D(O)tpT: 

(5.52) 

which forms together with (5.50) a complete set of pro­
jective unirreps of pT. 

Line S: pq = {E ,ade}- N(Pq) ",ps = {E ,ay}Xpq 

According to the first .Fay [(4.28), (4.29)] we start from 
the vector unirreps of PQ, 

D)1: fJ.=0,1 ade-(-l»)1, 

and obtain, by inspecting 

D)1 (n)S(a y , n) = B)1 (a y )D)1 (n)B)1 (a,)t , 

the following result: 

N{fJ.}=pq for fJ."'O,l~~Apq",{O}. 

(5.53) 

(5.54) 

(5.55) 

Therefore, we have to use the units [see Eq. (3.66)] 

p(O) Ips = EO p(O)IPS=v(a )EO (5.56) 
E.E ,oy,E y 

in order to obtain the two-dimensional projective unir­
rep of pS. 

D(O)tps: 

ade _11 01' a,_IO -11. 
o -1 1 0 

(5.57) 

Line Z: pq = {E,az}-N(pq)=Pz = {E,a,}X{E,a z } 

In this case we proceed completely in the same way as 
before with the only difference that ade must be replaced 
byaz • 

Plane RMX: pq = {E}- pPlane= {E ,a y} 

In this case we obtain immediately, because of Eq. 
(5.10), the two one-dimensional projective unirreps of 
pPlane, 

(5.58) 

Now we are in the position to determine quite general­
ly, by means of Eq. (4.25) together with the projective 
unirreps Df the corresponding little cogroups, a com­
plete set of vector unirreps of the nonsymmorphic space 
group Pn3n. 

Finally we recall that the second possibility [as de-

2079 J. Math. Phys., Vol. 18, No. 10, October 1977" 

scribed by Eqs. (4.30) and (4.32)J is equally well suited 
tD determine the projective unirreps of the little co­
groups in question. However one must be aware that in 
general these projective unirreps can only be equivalent 
to those who are found according to the first way [(4.28), 
(4.29)] as can be seen from the following example: 

Line s: pq = {E ,a yJ - N(Pq) = pS = {E, ade}xpq 

Now we have to start the induction procedure from the 
projective unirreps (5.58) [where K is replaced by fJ.] of 
pplane and obtain by inspection of 

D)1 (n)S (n, ade) = 8)1 (ade )D)1 (n) 13)1 (ade) t for all n (C {E, a) 

(5.59) 

the following result: 

N{fJ.}=pq for fJ.=0, l~AApq= {OJ, (5.60) 

In this case we have tD use the units 

p(O) IpS =Eo p(O) Ips =V(a )EO (5.61) 
E,E ,ode,E de 

in order to be able to determine the two-dimensional 
projective unirrep of pS , 

D(O)tps: 

a y -I ~ :i I, ade -I ~ ~ I· (5.62) 

In comparing (5.62) with (5.57) we recognize that these 
projective unirreps of pS are only equivalent. A simple 
calculation yields 

W t ~O) IpS (y)W = D(O) IpS (y) for all y l~ pS 

1 (1 i( with W = f2 -1 i . (5.63) 

VI. CONCLUDING REMARKS 

It was the aim of this paper to investigate the problem 
of how the projective unirreps of a finite group G for a 
given standard factor system Q can be constructed by 
means of induction from the projective unirreps of a 
normal subgroup N of G. In order to make the induction 
procedure more apparent we emphasize the use of group 
algebraic techniques. Thereby we were able to show 
that 

(i) the projective left- (right-) regular representatiDn, 
respectively the corresponding representation Df the 
left- (right-) group algebra A(G) of a finite gTOUp G for 
a given standard factor system Q can be defined in a 
consistent way; 

(ii) the special standard factor system K (being an es­
sential part of the induction procedure) which belongs to 
the factor group N{fJ.}/N, can be determined quite gen­
erally only for the special case n)1 = 1; and 

(iii) that the units of A(G) and therefore the matrix 
elements of the induced projective unirreps of G are ob­
tained quite generally. 

However, beSides this the key problem (for the cases 
n!1 > 1), namely to determine in full generality the spe­
cial standard factor system K, remains unsolved. This 
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implies that the factor system K has to be determined 
for every case separately. 

Finally we recall that the described induction proce­
dure offers an alternative method (and is really used in 
the example Pn3n) to determine by means of induction 
the projective unirreps of little cogroups of nonsym­
morphic space groups out from unirreps of other little 
cogroups which are subgroups of the original one. These 
induced projective unirreps have the useful property of 
decomposing (up to equivalence) immediately into direct 
sums of projective unirreps of the corresponding sub­
group, if the subduction is carried out. Clearly, this is im­
important for physical applications, since such subductions 
arise, if investigating the "compatibility relations" for 
space groups. 22.14 .23 A further application which we have in 
mind is that the determination of Clebsch-Gordan coef­
ficients for nonsymmorphic space groups24.25.5 .7.26-28 
could become simpler, if one used projective unirreps 
of the little cogroups which can be found by the proposed 
method. 

ACKNOWLEDGMENTS 

I want to thank Professor Simon Altmann for introduc­
ing me to this subject by his excellent lectures given in 
Vienna in April 1975 and for making available to me a 
preliminary version of his book on induced representa­
tions. Furthermore I am indebted to Professor Rhoda 
Berenson, Professor Joseph Birman, and Professor 
Jan Morzymas for valuable discussions concerning this 
subject. Finally I am indebted to Professor van den 
Broek for calling may attention to an erroneous propo­
sition in the first version of this work. 

1G . W. Mackey, Acta Mathematica 99, 265 (1958). 
2G. W. Mackey, Induced Representations of Groups and Quan­

tum J,Jechanics (Benjamin, New York, 1968). 
:lCh. W. Curtis and 1. Reiner, Representation Theorv of Finite 

Groups and Associative Alf{ebras (Wiley, New York, 1962). 

2080 J. Math. Phys., Vol. 18, No. 10, October 1977 

40. V. Kovalev, Irreducible Representations of Space Groups 
(Gordon and Breach, New York. 1965). 

5J. L. Birman, in Handhuch der Physii?, edited by S. FlUgge 
(Springer. Berlin, 1974). 

sc. J. Bradley and A. P. Cracknell, The Mathematical Theory 
of Symmetry in Solids (Clarendon, Oxford, 1972). 

7R. Berenson and J. L. Birman, J. Math. Phys. 16, 227 (1975). 
8M. Hamermesh, Group Theory and Its Applications to Ph,'si­

cal Problems (Addison-Wesley, Reading, Mass., 1962). 
!!s. L. Altmann, "Induced Representations in Crystals and 

Molecules" (Academic, London, 1977, in press). 
lOS. L. Altmann and C. J. Bradley, Rev. Mod. Phys. 37, 33 

(1965). 
11R. Car, G. Ciucci, and L. Quartabelle, J. Math. Phys. 17, 

1051 (1976). 
12J. Zak, J. Math. Phys. 1, 165 (1960). 
13L. T. Klauder, Jr. and J. G. Gay, J. Math. Phys. 9, 1488 

(1968). 
14J. F. Cornwell, Group Theory and Electronic Energy Bands 

in Solids (North-Holland, Amsterdam, 1969). 
15 A. J. Coleman, in Group Theory and Its Applications, edited 

by 1\1. Loebl (Academic, New York, 1968). 
IbL. Jansen and M. Boon, Theory of Finite Groups. Applica­

tions in Physics (North-Holland, Amsterdam, 1967). 
17R. Dirl and P. Kasperkovitz, ('yuppentheorie, Anwendungen 

in der Atom-wid Festkoyperpln'sik (Vieweg, Braunschweig, 
1977). 

18R. Dirl, J. Phys. A 9, 829, 843 (1976). 
19p. Kasperkovitz and R. Dirl, J. Math. Phys. 15, 1203 (1974). 
2oD. J. Klein, in Group Theon and Its Applications, edited by 

M. Loebl (Academic, New York, 1975), Vol. II. 
21J. C. Slater, Rev. Mod. Phys. 37,68 (1965). 
22L. P. Bouckaert, R. Smoluchowski, and E. Wiguer, Phys. 

Rev. 50, 58 (1936). 
23p. Kasperkovitz and R. Dirl, Acta Phys. Austriaca 42, 57, 

202 (1975). 
24D. B. Litvin and J. Zak, J. Math. Phys. 9,212 (1968). 
25L. K. Saulevich, D. T. Sviridov, and Yu. F. Smirnov, SOY. 

Phys .-Crystall. 15. 355 (1970). 
2GR. Berenson, 1. Itzkan, and J. L. Birman, J. Math. Phys. 16, 

236 (1975). 
27p. Gard, J. Phys. A 6, 1837 (1973). 
28A. P. Cracknell and B. L. Davies, in Lecture Noles in Physics. 

edited by A. Janner, T. Boon, and M. Boon (Springer, Berlin, 
1976), Vol. 50. 

R.Dirl 2080 



                                                                                                                                    

Coherent states associated with the continuous spectrum of 
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A new, explicit formula is obtained for the coherent states associated with a continuous spectrum of the 
noncompact group SU(1,I). The method is based on a simple and unified algebraic approach. We briefly 
discuss its relations to the generalized coherent states of Barut and Girardello, and of Perelomov. 

I. INTRODUCTION 

The notion of coherent states was first introduced by 
Weyl for the nilpotentgroup.l Recently it has been extend­
ed to any Lie group.2,3 Barut and Girardell04 have con­
structed in particular the coherent states associated with 
the discrete series of representations of 80(2,1). They 
are the eigenstates of the lowering and raising operators 
of noncompact groups. On the other hand, Perelomov 
has generalized the coherent states in such a way that a 
set of coherent states is invariant relative to the action 
of the group representation operators. 

It has been suggested since,2,4 that one extend the no­
tion of coherent states for the continuous spectrum cor­
responding to the infinite-dimensional unitary represen­
tations of the noncompact groups. But so far no explicit 
construction seems to have appeared in the literature. 
The purpose of this paper is to present a general method 
for constructing such states. In particular we deal with 
the continuous basis of the simplest semisimple Lie 
algebra of SU(I, 1). Explicit coherent states are then 
constructed on this basis, which are somewhat analogous 
to the Bloc h coherent states of SU(2). 

In atomic physics, coherent states associated with a 
system of spins are known as the Bloch coherent 
states.5

,6 They can be obtained by rotating the lowest 
angular momentum state (called the lowest Dicke state) 
in the manifold of the group of the angular momentum; 
they provide natural and useful bases for various cal­
culations of superradiance and superconductivity. 7,8 

Moreover they possess a unique property in that they 
represent special quantum states most closely approxi­
mating classical states, e.g., the uncertainty relation 
takes its minimum value for these states. The Bloch 
coherent states of SU(2) form a subsystem of the sys­
tems of generalized coherent states of Perelomov. 
Thus, they are invariant relative to the action of the 
group representation operators. We might call the gen­
eralization of this particular system of coherent states a 
Bloch-type system, and in the text we shall restrict 
ourselves to this particular system of coherent states. 
In Sec. II we demonstrate our method by deriving the 
coherent states for the discrete spectrum of SU(I, 1), 
and we compare the results with those of Barut and 
Girardello. In Sec. Ill, we construct an explicit formula 
for the coherent states associated with the continuous 
spectrum, and Sec. N is devoted to discussion and to 
some further remarks. 
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II. COHERENT STATES ASSOCIATED WITH THE 
DISCRETE SPECTRUM OF SUO, 1)17 

In connection with the general scalar coefficients, 
Van der Waerden9 ,10 introduced an invariant form for the 
compact SU(2) group, 

w=IIA~i 
i • 

(2.1) 

whereAi=(7)j~k-7)k~)' i,j,k=I,2,3cyclic. a i are non­
negative integers. 7) and ~ are the two fundamental com­
plex variables of the group, and i refers to the three 
distinct representation spaces. Ai are called elementary 
scalars. 

The skew-symmetric form of Ai reflects the following 
theorem 11-14; 

Malcev-Dynkin Theorem: The self contragradient IR 
(Scm) of the connected semisimple Lie groups leaves the 
nondegenerate bilinear form invariant which is symme­
tric (skew-symmetric) according to whether the scm is 
orthogonal (symplectic). 

All the !R's of SU(2) are SC1S and the small",st scm is 
even-dimensional. Letting a1 = a2 = 0 and a3 = 25, the 
SU(2) Bloch coherent states can be derived. 16 

We shall now extend the notion of the Van der Waerden 
invariant for noncompact groups, i.e., let 

(2.2) 

The Bargmann-Schwinger realization of the SU(I, 1) 
Lie algebra is well known, 

L + = E7)0" L _ = E ~ 0 n , 

L3=i(7)0n-~a,), E=+V-g33' 

and the basis functions are,17 

(2.3) 

g (Z) = (-g33)4>-
m
r(2¢ + 1) z<l>+mz4>-m (2.4) 

m r(¢+m+1)r(¢-m+1) 1 2 , 

where g33 = -1 for SU(2) - 0(3), and + 1 for SU(1, 1) 
-0(2,1). One can easily see that {Z,Z}", IZ112 -g331Z212 
is preserved by the fundamental representation of the 
group. Let us consider the following function, 

F(W,Z)=6 g!(W)gm(Z), 
m=O 

(2.5) 

F can be viewed as a scalar product of two basis vectors 
which belong to the two distinct Hilbert spaces of IR 
characterized by 2¢. In fact, 

F(W,Z)={W, Z}24> . (2.6) 
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Comparing Eq. (2.6) and Eq. (2.2) with 2S-2cp, we 
establish the correspondences 

(2.7) 

Let us rewrite Wi, Wi - v, 11 respectively. Then Eq. 
(2.7) means that the operators in Eq. (2.3), once op­
erated upon W(v, 11) space, would be replaced by,18 

L+-Ellfl v ' L_-EVfl", 

L 3 - ~(llfl/1 -vflv). 
(2.8) 

We are interested in the coherent states defined over 
the homogeneous factor space G/H - SU(l, 1)/SO(2). Let 
Z be a vector belonging to the Hilbert space of the set 
of pure states. This Hilbert space is isomorphic to an 
upper sheet of the hyperboloid. Without a loss of gen­
erality we can set, 

{Z,ZY~ =1. (2.9) 

The completeness relation for the basis function gn(Z) 
'= 1 cpn) is written 

F(Z,Z)=6Icpn)(cpnl=1. (2.10) 
n=.O 

The homogeneous factor space is a unit disc that can 
be parametrized by a single complex variable, say w. 19 

We fix our parametrization by letting 11' c:: GIH, and 
v-w, /1-1, respectively. We have 

(2.11) 

Note that the fundamental length (1 - g 331 W 12) is preserved 
in the operation of the group. Substituting (2.4) for 
(2.6)withcp+m-N, cp-m-2cp-N, respectively, and 
using the binomial expansion,2o we obtain 

(2.12) 

where the normalization factor is ignored. Note that 
1 w) is not identical with the SU(l, 1) coherent states 
given by Barut and Girardello,4 in which L_ (L.) is dia­
gonalized. In fact, their coherent states are 

00 (,'2 z)n 
IZ)B.G. = [r(_2cp)]11 2 L [r(n + 1) r(-2cp +n)]1/2 1 cpn) . 

n=O 

(2.13a) 

It can be seen easily that the following holds for IZ)B.G., 

L.!o2)BG. =02 lo2)B.G. . (2.13b) 

On the other hand, we have 

L /w)=" [ (-g33)2<t>-Nr(2cp +1) Jl
/2 WN+1 (2¢ -N) I¢N) 

- 6 r(N+1)r(2¢ -N+1) , 
N 

(2.14) 

i.e., Iw) fully retains the property of the Bloch coherent 
states. Equation (2.11) gives the norm of I WI, and the 
nonorthogonality is written 

(w'lw)=(1-g33w'*w)2~. (2.15) 

With the resolution of unity, 

r dO' (w) / w)(w 1=6 I ¢N)(cpN I = 1, 
~ N=O 

(2.16) 
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one can write 

Uli)= J dO' (w)Ulw)(w Ii), (2.17) 

where If) and Ii) belong to the Hilbert space of IR's of 
the vectors of G/H. LettingdO'(w)==O'(r)rdrdcp, Iwl=r, 
the rhs is, 

27T I oo

drO'(r)r2N
+

1 

o 

"r(-2cp+1) I I 
x 6 r(N + 1)r(-2cp +N + 1) U cpN)<cpN i). 

N 

Due to Eq. (2.16), air) satisfies 

f ood () 2N+l r(N + 1)r(-2cp +N + 1) r a r r == ---'----.:..,.......:.-~~---'-
o 27Tr(-2cp+1) , 

and via the Mellin transform, we obtain 

( ) = 21'-2~ K ~ (21') > 0 > 0 
O'r 7Tr(-2cp+1) ,r , 

where 

K (2r) "'~o 1_~(2r) -l~ (2r) 
<1> 2 sin(cp7T) 

and 

(2.18) 

(2,19) 

(2.20a) 

(2.20b) 

(2.20c) 

K~(2r) is the modified Bessel function of the third kind, 
and 1<1> (2r) is the modified Bessel function of the first 
kind, Equations (2.20) are the counterparts of the form­
ulas given in Ref. 4. Equations (2.12), (2.16), and (2.15) 
completely specify the system of the Bloch-type coherent 
states. 

III. COHERENT STATES ASSOCIATED WITH THE 
CONTINUOUS SPECTRUM OF SU(1, 1) 

Let us consider the SU(l, 1) algebra in which L 23 is 
diagonalized.21 

L 12 ", (i/f2Xfld - dfl.) , 

L 13 = (E/f2) (u fld +da), (3.1) 

L 23 = (E/f2)(ufl u -dfld ) , 

where II = (1/12)(7) + iO, d = (1/f2)(~ + i7). The basis 
functions are, 

(3.2) 

where a is in general a complex number. Our task is to 
construct the coherent states defined over GIH - SU(l, 1)1 

0(1,1) as a certain linear combination ofj"'(Z). Clearly 
it suffices to consider rotations around the third axis, 

(3.3) 

which preserve the form {Iu /2+ /d/ 2
} for both compact 

and noncompact cases. Defining the state conjugate to 
jcpa) '= f"(Z), 

(3.4) 

M. Hongoh 2082 



                                                                                                                                    

the orthogonality of the basis function can be expressed 
as follows: 

(3.5) 

The normalization constant A '" can be obtained by using 
the complex binomial expansion of the invariant form, 

IA F = ~ r{-cp Ha)r(-cp - w) '" a 
'" 21T r(-2cp) . 

(3.6) 

Let us introduce a function 

J (W Z)= J+(I/ .)~ daf'" (W)*f"'(Z) 
'-(j/.l~ , (3.7) 

which is the continuum version of Eq. (2.5). One can see 
immediately that 

(3.8) 

We now consider the Hilbert space which corresponds 
to an upper half of the hyperboloid lying along the first 
axis. Let Z(u,d) belong to this Hilbert space, and we 
set 

{luI2+ Idr}=1. (3.9) 

Then from Eqs. (3.2) and (3.7) we obtain, 

J (W, Z) = J da IA O! 12(Wi>ob+.a(W
2

)4>-ea I cpa). (3.10) 

Due to the correspondences (2.6), we replace wi, wt 
- 0, p respectively; where p, e are complex variables 
similar to u, d. The factor space may be projected onto 
a unit disc perpendicular to the first axis, which can be 
parametrized by a single complex variable. This 
amounts to having e -e, p-l, and the coherent states 
are, 

10)= da 'f' 'f' oob.ealcpa). J+(l/e)~ [r(_rl-+w)r(_rl- -Ea)Jl/2 

-(I/ E)~ 21Tr(-2cp) 
(3.11) 

To the best of our knowledge, this expression has not 
appeared in the literature before. The nonorthogonality 
of 10) is, 

(0'1 e > = ~ Jda r(-cp Ha)r(-cp - E a) (e'*O)<b+E" . (3.12) 
21T r(-2cp) 

r{-cp Ha) and r(-¢ -Ea) have poles at a=y+i(N -x) 
and at -y + i(x -N) respectively (x and y a.re the real and 
imaginary parts of cp). 

Integrating clockwise along the contour and summing 
contributions from poles of r(-cp - Ea), we obtain 

(0'/0)= 1 ~ (_)Nr(_2cp +N) (0 I *IJ)N ( ,* )20-N/ 
r{-2CP)~ r(N+l) p p P,P'=l' 

(3.13) 

Note the rhs is the complex binomial expansion. Thus 

(e'/e)=(l+e'*e)2°, /e'*O/<l, 

In particular the norm of Ie) is, 

II Ie > 1/2 = (1 + I e F )2ob . 

/arg(-8'*e)/<1T . 

(3.14) 

(3.15) 

Dividing Ie) by the square root of its norm, we define 
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Then the completeness relation can be written as 

<fli)= J da(e)(fle><e Ii>. (3.16) 

With daCe) = a(r)rdrdcp we have, 

Uli) = J da(f/cpa)(cpa Ii) 

= (1 +21~ 12)20 r a(r) dr 

x (~daIA",/2r2Cob+ea)<J/cpa)(4>ali). (3.17) 

Inserting the beta function for IAa F 

(3.18) 

we obtain 

21~dra(r)!.f+~ da<flcpa)(cpa li)= (fli), 
or-co 

(3.19) 

where a(r) is, 

a(r) = (r!2)Ii(r) , r;?!O, (3.20a) 

or 
r = /2 exp(_r2) , r;?! 0 . (3.20b) 

Equation (3.20) together with Eqs. (3.11) and (3.16) 
completely specify the system of the coherent states as­
sociated with the continuous spectrum. 

IV. CONCLUDING REMARKS 

A simple method is introduced for constructing the 
explicit Bloch-type coherent states for the UIR of non­
compact Lie groups. In particular we have studied the 
coherent states associated with both the discrete and 
the continuous spectra of SU(l, 1). The method might 
be useful in constructing the general coherent state rep­
resentations for other noncompact groups which appear 
frequently in the applications to physical problems. 
This will be discussed elsewhere. 
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Comments on "Periods on manifolds, quantization, and 
gauge" by R. M. Kiehn [J. Math. Phys. 18, 614 (1977)] 
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(Received 20 April 1977) 

In a recent paper entitled "Periods on manifolds, 
quantization, and gauge," Kiehnl suggests an interpre­
tation of flux, charge, and angular momentum quantiza­
tion in terms of a set of, in principle, independent con­
cepts relating to the periods of one-, two-, and three­
dimensional cyclic integrals in space-time. In addition 
to the very interesting aspects cited by the author, per­
mit me to delineate, what seems, an emerging inter­
relation with past and ongoing work and the consequenc­
es thereof: 

I. Since periods are topological invariants having the 
properties of numbers, the magnitude of these numbers 
must be taken to be totally independent of the choice of 
space-time references. It then follows that there is no 
meaning to an inquiry with the objective of establishing 
a time and position dependence of these periods. Hence 
the periods, Le., the quantum of action and the quantum 
of electric charge, are so declared to be metric inde­
pendent quantities. 

II. The central premise of topological invariance, for 
the laws of nature so expressed in terms of period inte­
grals, lends a new perspective to the earlier work of 
Kottler,z Cartan,s and van Dantzig4 on the metric inde­
pendent invariances of certain laws of nature. A more 
detailed evaluation of this interrelation is given in a 
forthcoming paper entitled "Uncertainty and metric 
structure ."5 

III. The elevation of flux quantization to a truly inde­
pendent fundamental law rules out the hypothesis of 
magnetic charge as incompatible with such change in 
basic assumptions. The new hypothesis in fact estab­
lishes a perspective on the recent work of Jehle6 on flux 
quantization and particle structure. 

IV. While the occurrence of one- and two-dimensional 
period integrals in physics have been a matter of aware­
ness for some time, Kiehn adds a new item in the form 
of a three-dimensional period integral related to a dif­
ferential 3-form of action denSity and action flux. The 
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need for such a "three index" field was earlier estab­
lished by Belinfante7 in local field theory, and in the 
context of continuum dynamics by Mindlin.8 Recently 
the local space-time aspects of that field have been 
studied in their relation to spaces with torsion by Heh19 

and co-workers. It seems unavoidable that a concomit­
ant of the latter field should be related to Kiehn's dif­
ferential 3-form S. 

V. The introduction of nontrivial three-dimensional 
periods raises the question of a possible decomposition, 
if the three-dimensional cyclic domains C3 in question 
can be viewed as the topological product of physically 
meaningful lower dimensional cyclic domains Cl and 
C2 , Kiehn's relation (19), 

where 

A = 1-form of flux: vector four-potential, 

H =2-form of electric charge: fields D and H, 

thus permits a conceivable cross check with Jehle's fun­
damental assumptions on flux quantization; provided the 
topological configurations of Cl , Cz , and C3 can be 
known. 
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Comments on "Periods on manifolds, quantization, and 
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(Received 20 April 1977) 

In a recent paper entitled "Periods on manifolds, 
quantization, and gauge," Kiehn! suggests an interpre­
tation of flux, charge, and angular momentum quantiza­
tion in terms of a set of, in principle, independent con­
cepts relating to the periods of one-, two-, and three­
dimensional cyclic integrals in space-time. In addition 
to the very interesting aspects cited by the author, per­
mit me to delineate, what seems, an emerging inter­
relation with past and ongoing work and the consequenc­
es thereof: 

I. Since periods are topological invariants having the 
properties of numbers, the magnitude of these numbers 
must be taken to be totally independent of the choice of 
space-time references. It then follows that there is no 
meaning to an inquiry with the objective of establishing 
a time and position dependence of these periods. Hence 
the periods, Le., the quantum of action and the quantum 
of electric charge, are so declared to be metric inde­
pendent quantities. 

II. The central premise of topological invariance, for 
the laws of nature so expressed in terms of period inte­
grals, lends a new perspective to the earlier work of 
Kottler,z Cartan / and van Dantzig4 on the metric inde­
pendent invariances of certain laws of nature. A more 
detailed evaluation of this interrelation is given in a 
forthcoming paper entitled "Uncertainty and metric 
structure ."5 

III. The elevation of flux quantization to a truly inde­
pendent fundamental law rules out the hypotheSis of 
magnetic charge as incompatible with such change in 
basic assumptions. The new hypothesis in fact estab­
lishes a perspective on the recent work of Jehle6 on flux 
quantization and particle structure. 

IV. While the occurrence of one- and tWO-dimensional 
period integrals in physics have been a matter of aware­
ness for some time, Kiehn adds a new item in the form 
of a three-dimensional period integral related to a dif­
ferential 3-form of action denSity and action flux. The 
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need for such a "three index" field was earlier estab­
lished by Belinfante 7 in local field theory, and in the 
context of continuum dynamics by Mindlin.8 Recently 
the local space-time aspects of that field have been 
studied in their relation to spaces with torsion by Heh19 

and co-workers. It seems unavoidable that a concomit­
ant of the latter field should be related to Kiehn's dif­
ferential 3-form S. 

V. The introduction of nontrivial three-dimensional 
periods raises the question of a possible decomposition, 
if the three-dimensional cyclic domains C

3 
in question 

can be viewed as the topological product of physically 
meaningful lower dimensional cyclic domains C1 and 
C2 , Kiehn's relation (19), 

where 

A '= 1-form of flux: vector four-potential, 

fI '=2-form of electric charge: fields D and H, 

thus permits a conceivable cross check with Jehle's fun­
damental assumptions on flux quantization; provided the 
topological configurations of C1 , C2 , and C3 can be 
known. 
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ERRATA 

Erratum: Calculation of the Molien generating function for 
invariants of space groups 
[J. Math. Phys. 18, 1459 (1977)] 

Marko V. Jaric and Joseph L. Birman 

Physics Department. City College-CUNY. New York. New York 10031 
(Received 18 July 1977) 

The Molien generating function for irreducible 
representations *X3 and *X4, given in Table III should 
read: 

Thus the Molien function for *X3 and *X4 is identical 
to that for *R4. 

1 + 2z4 + 5z6 + 11z8 + 9z10 + 11z12 + 6Z14 + 3Z16 

(1 _ z2)(1 _ Z4)3 (1 _ Z6)2 
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